scholarly journals Model intercomparison for the present day, the mid-Holocene, and the Last Glacial Maximum over western Europe

Author(s):  
Mark R. Hoar
2011 ◽  
Vol 7 (1) ◽  
pp. 91-114 ◽  
Author(s):  
K. Arpe ◽  
S. A. G. Leroy ◽  
U. Mikolajewicz

Abstract. Model simulations of the last glacial maximum (21 ± 2 ka) with the ECHAM3 T42 atmosphere-only, ECHAM5-MPIOM T31 atmosphere-ocean coupled and ECHAM5 T106 atmosphere-only models are compared. The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the Paleoclimate Modelling Intercomparison Project Phase II (PMIP2) data set while for ECHAM3 they were taken from PMIP1. The ECHAM5-MPIOM T31 model produced its own sea surface temperatures (SST) while the ECHAM5 T106 simulations were forced at the boundaries by this coupled model SSTs corrected from their present-day biases and the ECHAM3 T42 model was forced with prescribed SSTs provided by Climate/Long-Range Investigation, Mapping, and Prediction project (CLIMAP). The SSTs in the ECHAM5-MPIOM simulation for the last glacial maximum (LGM) were much warmer in the northern Atlantic than those suggested by CLIMAP or Overview of Glacial Atlantic Ocean Mapping (GLAMAP) while the SSTs were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in western Europe and cooler for eastern Europe than the simulation with CLIMAP SSTs. Considerable differences in the general circulation patterns were found in the different simulations. A ridge over western Europe for the present climate during winter in the 500 hPa height field remains in both ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP-SST simulation provided a trough which is consistent with cooler temperatures over western Europe. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jets in the simulations for the LGM, least obvious in the ECHAM5 T31 one, and an extremely strong polar jet for the ECHAM3 CLIMAP-SST run. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during the LGM is supported by palaeo-data. Cyclone tracks in winter represented by high precipitation are characterised over Europe for the present by a main branch from the British Isles to Norway and a secondary branch towards the Mediterranean Sea, observed and simulated. For the LGM the different models show very different solutions: the ECHAM3 CLIMAP-SST simulation shows just one track going eastward from the British Isles into central Europe, while the ECHAM5 T106 simulation still has two branches but during the LGM the main one goes to the Mediterranean Sea, with enhanced precipitation in the Levant. This agrees with an observed high stand of the Dead Sea during the LGM. For summer the ECHAM5 T106 simulation provides much more precipitation for the present over Europe than the other simulations, thus agreeing with estimates by the Global Precipitation Climatology Project (GPCP). Also during the LGM this model makes Europe less arid than the other simulations. In many respects the ECHAM5 T106 simulation for the present is more realistic than the ECHAM5 T31 coupled simulation and the older ECHAM3 T42 simulation, when comparing them with the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis or the GPCP precipitation data. For validating the model data for the LGM, pollen, wood and charcoal analyses were compared with possible summer-green tree growth from model estimates using summer precipitation, minimum winter temperatures and growing degree days (above 5 °C). The ECHAM5 T106 simulation suggests for more sites with findings of palaeo-data, likely tree growth during the LGM than the other simulations, especially over western Europe. The clear message especially from the ECHAM5 T106 simulation is that warm-loving summer-green trees could have survived mainly in Spain but also in Greece in agreement with findings of pollen or charcoal. Southern Italy is also suggested but this could not be validated because of absence of palaeo-data. Previous climate simulations of the LGM have suggested less cold and more humid climate than that reconstructed from pollen findings. Our model results do agree more or less with those of other models but we do not find a contradiction with palaeo-data because we use the pollen data directly without an intermediate reconstruction of temperatures and precipitation from the pollen spectra.


2009 ◽  
Vol 36 (12) ◽  
pp. 2853-2867 ◽  
Author(s):  
William E. Banks ◽  
João Zilhão ◽  
Francesco d'Errico ◽  
Masa Kageyama ◽  
Adriana Sima ◽  
...  

2018 ◽  
Vol 11 (3) ◽  
pp. 1033-1057 ◽  
Author(s):  
Masa Kageyama ◽  
Pascale Braconnot ◽  
Sandy P. Harrison ◽  
Alan M. Haywood ◽  
Johann H. Jungclaus ◽  
...  

Abstract. This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) – Phase 2, detailed in Haywood et al. (2016).The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs.


1996 ◽  
Vol 62 ◽  
pp. 1-17 ◽  
Author(s):  
Ruth Charles

This paper critically examines the known radiocarbon evidence for the human recolonisation of a part of north-western Europe, the north-western Ardennes. Two sites in this region, the Trou de Blaireaux at Vaucelles and the Grotte de Sy Verlaine, have been suggested as two of the earliest human occupation sites after the Last Glacial Maximum in northern Europe. The dating evidence from these two sites, alongside other late Magdalenian sites in the immediate area, is reviewed and found to be highly problematic. More recent radiocarbon work using AMS is described and the results discussed. On this basis it is suggested that there is no direct evidence for human presence in this region prior to the start of the Böiling Interstadial phase of the Lateglacial, c. 13,000 BP.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Luc Moreau ◽  
Christelle Draily ◽  
Jean-Marie Cordy ◽  
Katherine Boyle ◽  
Michael Buckley ◽  
...  

AbstractThe impact of deteriorating climatic conditions on variability in the archaeological record towards the Last Glacial Maximum (LGM) remains uncertain. Partly as a result of poor-quality data, previous studies on Upper Palaeolithic (UP) societies of North-Western Europe prior to the LGM have focused on techno-typological traditions and diversification to outline the diachronic processes through which assemblage composition changed. This study addresses the adaptive trade-offs brought about by the general climatic downturn towards the LGM in North-Western Europe, by investigating the impact of local climate and habitat characteristics on the behavioural variability that characterises Gravettian technological organisation compared to the previous Aurignacian, based on two assemblages from Walou Cave, Belgium. This site is one of the rare well-stratified sites in North-Western Europe with evidence for multiple occupation events accompanied by a fine-grained palaeoenvironmental record. We use a combination of analytical techniques (AMS, LA-ICP-MS and ZooMS) to evaluate questions about hunter-gatherer adaptations. Faunal remains at Walou Cave mirror the faunal diversity documented at numerous other Aurignacian and Gravettian sites in the broader European context, which is similar between both periods. The overall picture presented here, using multiple lines of evidence, is not entirely clear; nonetheless, the results suggest that Gravettian technologies are unlikely to solely be a product of heightened risk in relation to a significant reshuffling of food resources compared to the previous Aurignacian. Future research of the factors structuring assemblage variability prior to the LGM will have to assess whether Aurignacian and Gravettian technologies indeed offer no relative material advantage over one another, a phenomenon called ‘technological equivalence’.


Sign in / Sign up

Export Citation Format

Share Document