scholarly journals Diurnal temperature range as an index of global climate change during the twentieth century

2004 ◽  
Vol 31 (13) ◽  
pp. n/a-n/a ◽  
Author(s):  
Karl Braganza ◽  
David J. Karoly ◽  
J. M. Arblaster
2013 ◽  
Vol 175 ◽  
pp. 131-136 ◽  
Author(s):  
Jun Yang ◽  
Hua-Zhang Liu ◽  
Chun-Quan Ou ◽  
Guo-Zhen Lin ◽  
Qin Zhou ◽  
...  

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Terri Cook

To reduce the uncertainty associated with this important climate change index, recent studies have developed a new diurnal temperature range data set and compared the results to previous estimates.


2015 ◽  
Vol 105 (2) ◽  
pp. 230-238 ◽  
Author(s):  
S. K. Shakya ◽  
E. M. Goss ◽  
N. S. Dufault ◽  
A. H. C. van Bruggen

Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P < 0.005), as hypothesized. Infection efficiency, lesion growth rate, and sporulation increased under small temperature oscillations compared with constant temperatures but decreased when temperature oscillations were large. Thus, diurnal amplitude in temperature should be considered in models of potato late blight, particularly when predicting effects of global climate change on disease development.


2020 ◽  
Author(s):  
Camilla W. Stjern ◽  
Bjørn H. Samset ◽  
Olivier Boucher ◽  
Trond Iversen ◽  
Jean-François Lamarque ◽  
...  

Abstract. The diurnal temperature range (DTR), or difference between the maximum and minimum temperature within one day, is one of many climate parameters that affects health, agriculture and society. Understanding how DTR evolves under global warming is therefore crucial. Since physically different drivers of climate change, such as greenhouse gases and aerosols, have distinct influences on global and regional climate, predicting the future evolution of DTR requires knowledge of the effects of individual climate forcers, as well as of the future emissions mix, in particular in high emission regions. Using global climate model simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we investigate how idealized changes in the atmospheric levels of a greenhouse gas (CO2) and aerosols (black carbon and sulfate) influence DTR, globally and in selected regions. We find broad geographical patterns of annual mean change that are similar between climate drivers, pointing to a generalized response to global warming which is not defined by the individual forcing agents. Seasonal and regional differences, however, are substantial, which highlights the potential importance of local background conditions and feedbacks. While differences in DTR responses among drivers are minor in Europe and North America, there are distinctly different DTR responses to aerosols and greenhouse gas perturbations over India and China, where present aerosol emissions are particularly high. BC induces substantial reductions in DTR, which we attribute to strong modelled BC-induced cloud responses in these regions.


2005 ◽  
Vol 18 (3) ◽  
pp. 457-464 ◽  
Author(s):  
David J. Karoly ◽  
Karl Braganza

Abstract Variations of Australian-average mean temperature and diurnal temperature range over the twentieth century are investigated. The observed interannual variability of both is simulated reasonably well by a number of climate models, but they do not simulate the observed relationship between the two. Comparison of the observed warming and reduction in diurnal temperature range with climate model simulations shows that Australian temperature changes over the twentieth century were very unlikely to be due to natural climate variations alone. It is likely that there has been a significant contribution to the observed warming during the second half of the century from increasing atmospheric greenhouse gases and sulfate aerosols.


Sign in / Sign up

Export Citation Format

Share Document