Diagnosing long-term trends of the water mass properties in the East Sea (Sea of Japan)

2004 ◽  
Vol 31 (20) ◽  
Author(s):  
Young-Oh Kwon
2008 ◽  
Vol 43 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Chung Il Lee ◽  
Jae-Young Lee ◽  
Kwang-Ho Choi ◽  
Sung-Eun Park
Keyword(s):  
East Sea ◽  

2021 ◽  
Vol 8 ◽  
Author(s):  
Manuel Vargas-Yáñez ◽  
Mélanie Juza ◽  
M. Carmen García-Martínez ◽  
Francina Moya ◽  
Rosa Balbín ◽  
...  

The analysis of a 24-year time series of Conductivity-Temperature-Depth (CTD) casts collected in the Balearic Channels (1996–2019) has allowed detecting and quantifying long-term changes in water mass properties in the Western Mediterranean. For the complete period, the intermediate waters have experienced warming and salting at rates of 1.4°C/100yr and 0.3–0.6/100yr for the Western Intermediate Water, and 1°C/100yr and 0.3–0.4/100yr for the Levantine Intermediate Water. The density of these two water masses has not changed. The deep waters, defined as those denser than 29.1 kg/m3, showed positive trends in temperature, salinity, and density (0.8°C/100yr, 0.2/100yr, and 0.02 kg.m–3/100yr, respectively). The high temporal variability of the upper layer makes the detection of long-term changes more difficult. Nevertheless, combining CTD data with temperature data from the oceanographic station at L’Estartit and simulated data from the NCEP/NCAR reanalysis, it can be established that the Atlantic Water increased its temperature at a rate of 2.1–2.8°C/100yr and likely its salinity at a rate of 0.6/100yr. The water column absorbed heat at a rate equivalent to 1–1.2 W/m2. All these trends are much higher than those reported in previous works (more than double in some cases). The warming of the water column produced an increase in the thermosteric component of sea level. However, this increase was compensated by the decrease in the halosteric component. Besides these changes, other alterations related to the Western Mediterranean Transition have been observed over shorter periods. The temperature and salinity of the intermediate waters increased before the winter of 2004/2005 and then the temperature and salinity of the deep waters increased dramatically in 2005. The density of the deep water reached values unprecedented before 2005. Deep and intermediate waters were uplifted by the presence of such dense deep waters. The arrival of warmer and saltier intermediate waters from the Eastern Mediterranean is also observed, mainly after 2010.


Author(s):  
Н.И. ГРИГОРЬЕВА

Проанализированы многолетние изменения фенодат начала нереста и оседания приморского гребешка (Mizuhopecten (=Patinopecten) yessoensis Jay, 1857) в бухте Миноносок (зал. Посьета, зал. Петра Великого, Японское море) в 1970–2011 гг. Выявлен сдвиг среднемноголетних сроков нереста и оседания на более ранние даты. Рассчитана энтропия процессов. The long-term changes of the phenological dates of the Yesso scallop (Mizuhopecten (=Patinopecten) yessoensis Jay, 1857) spawning and settling onsets in Minonosok Inlet (Posiet Bay, Peter the Great Bay, East Sea/Sea of Japan) were analyzed in 1970–2011. It was found that the long-term average spawning and settling periods were moved to earlier dates. The entropy of processes was calculated.


2021 ◽  
Vol 7 ◽  
Author(s):  
Guy Sisma-Ventura ◽  
Nurit Kress ◽  
Jacob Silverman ◽  
Yaron Gertner ◽  
Tal Ozer ◽  
...  

Long-term trends in oxygen, salinity, and nutrients were followed in the Southeastern Mediterranean (SEMS) deep waters from 2002 to 2020. Results show a net decrease in oxygen since 2008 of −0.5 ± 0.1 μmol kg−1 yr−1 in the bathypelagic depths (1,200–2,000 m). Multiannual variability in oxygen levels superimposed this trend, and is likely associated with variations in thermohaline fluxes. The 2020 mean oxygen concentration of 179.5 ± 2.3 μmol kg−1 is comparable to the pre-Eastern Mediterranean Transient (EMT) mean value. The post-EMT signature is clearly demonstrated in both oxygen and salinity over the period of 2002–2013, but since 2014 it diminished, mainly due to mixing of the Aegean deep water (AegDW) mass with the overlying old Adriatic water mass. This trend reflects a switch back to the pre-EMT regime, characterized by thermohaline homogeneity of the deep water column in the SEMS. The long-term decline of deep water oxygen levels is also accompanied by a corresponding increase in dissolved inorganic nutrients, supporting aging of the deep water masses. Our results suggest that ventilation of the SEMS deep water is currently occurring at a lower, pre-EMT rate, probably as a result of moderated deep water formation in recent time.


2014 ◽  
Vol 513 ◽  
pp. 143-153 ◽  
Author(s):  
CD Stallings ◽  
JP Brower ◽  
JM Heinlein Loch ◽  
A Mickle

Sign in / Sign up

Export Citation Format

Share Document