scholarly journals Modeling regional haze during the BRAVO study using CMAQ-MADRID: 2. Source region attribution of particulate sulfate compounds

Author(s):  
Eladio M. Knipping ◽  
Naresh Kumar ◽  
Betty K. Pun ◽  
Christian Seigneur ◽  
Shiang-Yuh Wu ◽  
...  
Keyword(s):  
2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Tatsuo Ohmachi ◽  
Shusaku Inoue ◽  
Tetsuji Imai

The 2003 Tokachi-oki earthquake (MJ 8.0) occurred off the southeastern coast of Tokachi, Japan, and generated a large tsunami which arrived at Tokachi Harbor at 04:56 with a wave height of 4.3 m. Japan Marine Science and Technology Center (JAMSTEC) recovered records of water pressure and sea-bed acceleration at the bottom of the tsunami source region. These records are first introduced with some findings from Fourier analysis and band-pass filter analysis. Water pressure disturbance lasted for over 30 minutes and the duration was longer than those of accelerations. Predominant periods of the pressure looked like those excited by Rayleigh waves. Next, numerical simulation was conducted using the dynamic tsunami simulation technique able to represent generation and propagation of Rayleigh wave and tsunami, with a satisfactory result showing validity and usefulness of this technique. Keywords: Earthquake, Rayleigh wave, tsunami, near-field


1994 ◽  
Vol 20 ◽  
pp. 219-225 ◽  
Author(s):  
E.D. Waddington ◽  
D.L. Morse

10m firn temperatures are commonly used on the Antarctic plateau to estimate mean annual air temperatures. 10m firn temperatures measured at Taylor Dome (also referred to as McMurdo Dome in the literature), Antarctica, are influenced by a factor other than altitude and latitude that varies systematically across Taylor Dome. Some inter-related factors possibly contributing to the modern temperature variability are differences in sensible heat from warm or cold air masses, differences in wind strength and source region, differences in temperature inversion strength and differences in cloudiness. Our preliminary data are compatible with spatially variable katabatic winds that could control the winter temperature inversion strength to provide a large part of the signal. This has implications for paleoclimate studies.(1) Variations of the stable isotopes δ18O and δD from ice cores are a proxy for paleotemperature. The isotope thermometer is calibrated by comparing local isotope ratios with corresponding measured temperatures. In order to derive a useful isotope-temperature calibration, we must understand the processes that control the modern spatial variability of temperature. (2) In order to quantify past changes in local climate, we must understand processes that influence local spatial variability. If those processes differed in the past, ice-core climate reconstruction would be affected in two ways: through alteration of the geochemical record and through alteration of deep ice and firn temperatures.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Kazutoshi Imanishi ◽  
Makiko Ohtani ◽  
Takahiko Uchide

Abstract A driving stress of the Mw5.8 reverse-faulting Awaji Island earthquake (2013), southwest Japan, was investigated using focal mechanism solutions of earthquakes before and after the mainshock. The seismic records from regional high-sensitivity seismic stations were used. Further, the stress tensor inversion method was applied to infer the stress fields in the source region. The results of the stress tensor inversion and the slip tendency analysis revealed that the stress field within the source region deviates from the surrounding area, in which the stress field locally contains a reverse-faulting component with ENE–WSW compression. This local fluctuation in the stress field is key to producing reverse-faulting earthquakes. The existing knowledge on regional-scale stress (tens to hundreds of km) cannot predict the occurrence of the Awaji Island earthquake, emphasizing the importance of estimating local-scale (< tens of km) stress information. It is possible that the local-scale stress heterogeneity has been formed by local tectonic movement, i.e., the formation of flexures in combination with recurring deep aseismic slips. The coseismic Coulomb stress change, induced by the disastrous 1995 Mw6.9 Kobe earthquake, increased along the fault plane of the Awaji Island earthquake; however, the postseismic stress change was negative. We concluded that the gradual stress build-up, due to the interseismic plate locking along the Nankai trough, overcame the postseismic stress reduction in a few years, pushing the Awaji Island earthquake fault over its failure threshold in 2013. The observation that the earthquake occurred in response to the interseismic plate locking has an important implication in terms of seismotectonics in southwest Japan, facilitating further research on the causal relationship between the inland earthquake activity and the Nankai trough earthquake. Furthermore, this study highlighted that the dataset before the mainshock may not have sufficient information to reflect the stress field in the source region due to the lack of earthquakes in that region. This is because the earthquake fault is generally locked prior to the mainshock. Further research is needed for estimating the stress field in the vicinity of an earthquake fault via seismicity before the mainshock alone.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


2002 ◽  
Vol 15 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Zhao Jian-tao ◽  
Xiao-feng Cui ◽  
Fu-ren Xie

Sign in / Sign up

Export Citation Format

Share Document