flooding hazard
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Stefano Basso ◽  
Gianluca Botter ◽  
Ralf Merz ◽  
Arianna Miniussi

Abstract Magnitude and frequency are prominent features of river floods informing design of engineering structures, insurance premiums and adaptation strategies. Recent advances yielding a formal characterization of these variables from a joint description of soil moisture and daily runoff dynamics in river basins are here systematized to highlight their chief outcome: the PHysically-based Extreme Value (PHEV) distribution of river flows. This is a physically-based alternative to empirical estimates and purely statistical methods hitherto used to characterize extremes of hydro-meteorological variables. Capabilities of PHEV for predicting flood magnitude and frequency are benchmarked against a standard distribution and the latest statistical approach for extreme estimation, by using both an extensive observational dataset and long synthetic series of streamflow generated for river basins from contrasting hydro-climatic regions. The analyses outline the domain of applicability of PHEV and reveal its fairly unbiased capabilities to estimate flood magnitudes with return periods much longer than the sample size used for calibration in a wide range of case studies. The results also emphasize reduced prediction uncertainty of PHEV for rare floods, notably if the flood magnitude-frequency curve displays an inflection point. These features, arising from the mechanistic understanding embedded in the novel distribution of the largest river flows, are key for a reliable assessment of the actual flooding hazard associated to poorly sampled rare events, especially when lacking long observational records.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hongxi Liu ◽  
Yujun Yi ◽  
Zhongwu Jin

Changing climate has raised attention toward weather-driven natural hazards, such as rain-induced flash floods. The flooding model is an efficient tool used in flash flood warning and hazard management. More and more evidence showed significant impacts of sediment on hydrodynamics and flooding hazard of flash flood. But little information is available regarding flooding hazard sensitivity to sediment characteristics, which hampers the inclusion of sediment characteristics into the flash flood warning system and hazard management. This study used a 1D model to simulate flood hazards. After calibrating and validating the hydrodynamic model, we carried out simulations to test the sensitivity of flood hazard to sediment characteristics like inflow point, size distribution, and concentration. Our results showed that sediment from highly erosive slopes affects the flooding hazard more than sediment from watershed. This is particularly true when sediment particles are fine particles with a medium size of 0.06 mm. When medium particle size of sediment increased above 1 mm, most of the sediment particles are deposited in the river and we see little effect on flooding hazard downstream. Sediment concentration significantly influenced the flooding hazard but was less important than sediment inflow point and medium particle size. Our study suggested considering more characteristics than concentration when including sediment particles into the flash flood warning system.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2426
Author(s):  
Marco Delle Rose ◽  
Paolo Martano ◽  
Luca Orlanducci

Boulder dynamics may provide essential data for coastal evolution and hazards assessment and can be focused as a proxy for the onshore effect of intense storm waves. In this work, detailed observations of currently available satellite imagery of the Earth surface allowed us to identify several coastal boulders displacements in the Southern Apulia coast (Italy) for a period between July 2018 and June 2020. Field surveys confirmed the displacements of several dozens of boulders up to several meters in size, and allowed us to identify the initial position for many of them. Two possible causative storms were identified analysing archive weather maps, and calculations based on analytical equations were found in agreement with the displacement by storm waves for most of the observed boulders. The results help to provide insights about the onshore effect of storm waves on the coastal hydrodynamics and the possible future flooding hazard in the studied coast.


2021 ◽  
Vol 13 (15) ◽  
pp. 2943
Author(s):  
Petr Rapant ◽  
Jaromír Kolejka

Pluvial flash floods are among the most dangerous weather-triggered disasters, usually affecting watersheds smaller than 100 km2, with a short time to peak discharge (from a few minutes to a few hours) after causative rainfall. Several warning systems in the world try to use this time lag to predict the location, extent, intensity, and time of flash flooding. They are based on numerical hydrological models processing data collected by on-ground monitoring networks, weather radars, and precipitation nowcasting. However, there may be areas covered by weather radar data, in which the network of ground-based precipitation stations is not sufficiently developed or does not even exist (e.g., in an area covered by portable weather radar). We developed a method usable for designing an early warning system based on a different philosophy for such a situation. This method uses weather radar data as a 2D signal carrying information on the current precipitation distribution over the monitored area, and data on the watershed and drainage network in the area. The method transforms (concentrates) the 2D signal on precipitation distribution into a 1D signal carrying information on potential runoff distribution along the drainage network. For sections of watercourses where a significant increase in potential runoff can be expected (i.e., a significant increase of the 1D signal strength is detected), a warning against imminent flash floods can be possibly issued. The whole curve of the potential runoff development is not essential for issuing the alarm, but only the significant leading edge of the 1D signal is important. The advantage of this procedure is that results are obtained quickly and independent of any on-ground monitoring system; the disadvantage is that it does not provide the exact time of the onset of a flash flooding or its extent and intensity. The generated alert only warns that there is a higher flash flooding hazard in a specific section of the watercourse in the coming hours. The forecast is presented as a dynamic map of the flash flooding hazard distribution along the segments of watercourses. Relaying this hazard to segments of watercourses permits a substantial reduction in false alarms issued to not-endangered municipalities, which lie in safe areas far away from the watercourses. The method was tested at the local level (pluvial flash floods in two small regions of the Czech Republic) and the national level for rainfall episodes covering large areas in the Czech Republic. The conclusion was that the method is applicable at both levels. The results were compared mainly with data related to the Fire and Rescue Service interventions during floods. Finally, the increase in the reliability of hazard prediction using the information on soil saturation is demonstrated. The method is applicable in any region covered by a weather radar (e.g., a portable one), even if there are undeveloped networks of rain and hydrometric gauge stations. Further improvement could be achieved by processing more extended time series and using computational intelligence methods for classifying the degree of flash flooding hazard on individual sections of the watercourse network.


Author(s):  
Lisa M DeChano-Cook

This Classics Revisited/From the Archives paper summarizes the 1962 publication of Robert Kates regarding perceptions of the flooding hazard in LaFollette, Tennessee, and five other cities that were used for comparison. The influence of this work on improvements in flood hazards since 1962 are discussed, as well as suggestions as to how this work will continue to influence flood hazard management and mitigation.


2021 ◽  
Vol 3 ◽  
Author(s):  
Martina Angela Caretta ◽  
Rodrigo Fernandez ◽  
Nicolas Zegre ◽  
Jamie Shinn

The hydrosocial (HS) and social-hydro (SH) frameworks each attempt to understand the complexity of water and society, but they have emerged from historically disparate fields with distinctly different goals as well as methodological and epistemological standpoints. This paper encapsulates the shared experiences of two human geographers and two hydrologists studying hazard and vulnerability in two communities impacted by extreme flooding in West Virginia in 2016. We add to the limited examples of scientists working across epistemologies to improve the understanding of water-societal relations. In so doing, we also contribute to broader discussions of water justice. We outline an experimental approach connecting hydrosocial and social-hydro frameworks to study flood hazard and vulnerability. Within our conceptualization, we set forth that while social and hydrological factors can be presented as purely anthropogenic or geophysical, respectively, their intersection is the crux to investigate. The relationships between variables of both major categories can help us understand how the social and biophysical systems are interrelated. We depart from 21 semi structured interviews and a secondary analysis of local biophysical factors to develop a model that could show the relations between social and biophysical factors. Linking these factors is crucial step toward integration of SH and HS approaches to create a more comprehensive understanding of water-human relations. These studies can inform policymakers by highlighting where negative connections can be remedied and positive connections can be fostered to emphasize water justice.


Author(s):  
Marco Delle Rose ◽  
Paolo Martano ◽  
Luca Orlanducci

Boulder dynamics may provide essential data for the coastal evolution and hazards assessment and can be focused as a proxy for the onshore effect of intense storm waves. In this work, detailed observations of currently available satellite imagery of the Earth surface allowed to identify several coastal boulders displacements in the Southern Apulia coast (Italy), in a period between July 2018 and June 2020. Field surveys confirmed the displacements of several dozens of boulders up to several meters in size, also allowing the determination of the initial position for many of them. Archive weather analyses identified two possible causative storms during the same period, and calculations based on analytical equations are found in agreement with the displacement by storm waves for most of the observed boulders. The results help to give insights about the onshore effect of high storm waves on the coastal hydrodynamics and the possible future flooding hazard in the studied coast.


2021 ◽  
Vol 13 (12) ◽  
pp. 6787
Author(s):  
Elvia Aida Marín-Monroy ◽  
Victor Hernández-Trejo ◽  
Miguel Angel Ojeda-Ruiz de la Peña ◽  
Eleonora Romero-Vadillo ◽  
Antonina Ivanova-Boncheva

Climate change has resulted in severe consequences of hydrometeorological phenomena. The municipality of Los Cabos, Mexico, has been the most affected in the state of Baja California Sur by these hazards due to its location on the southern tip of the peninsula, being exposed with approximately 192 km of coastline; it is an environmental heritage that has made the area a primary tourist attraction in Mexico, which has caused a rapid growth in population with little knowledge about cyclone activity. In addition, there is limited knowledge regarding social indicators that measure vulnerability due to tropical cyclones. Based on the above, the objective of this study was to capture community perceptions about vulnerability related to tropical cyclones and to compare the results with real impacts and their index of socioenvironmental vulnerability, which includes indicators of exposure, sensitivity, and adaptive capacity, to provide useful information to form strategies to mitigate risk. Data were collected through a questionnaire-survey in 335 randomly selected households; we applied a probability model to the perception analysis and calculated an index to categorize vulnerability. We found differences between perceptions and real affectations, with 64% of households categorized as being highly vulnerable to tropical cyclones, and we detected a lower perception about damage suffered to their households. The variables related to knowledge and local or foreigner status were predictors of vulnerability perception. We included georeferenced data on flooding hazard maps as a strategy for adaptation.


2021 ◽  
Author(s):  
Mahshid Ghanbari ◽  
Mazdak Arabi ◽  
Shih‐Chieh Kao ◽  
Jayantha Obeysekera ◽  
William Sweet

2021 ◽  
Author(s):  
Omar Seleem ◽  
Maik Heistermann ◽  
Axel Bronstert

<p>Urban pluvial floods are considered as a ubiquitous hazard. The increase in intensity and frequency of extreme rainfall events, combined with high population density makes urban areas vulnerable to pluvial flooding. Pluvial floods could occur anywhere depending on the existence of minimal areas for surface runoff generation and concentration. Detailed hydrologic and hydrodynamic simulations are computationally expensive and resource-intensive. This study applies two computationally inexpensive approaches to identify risk areas for pluvial flooding. One approach uses common GIS operations to detect flood-prone depressions from a high-resolution 1m x 1m Digital Elevation Model (DEM), to identify contributing catchments, and to represent runoff concentration by a fill-spill-merge approach. The second approach employs GIS to identify pluvial flood-prone hotspots in terms of the topographic wetness index (TWI).  Based on the exceedance of a TWI threshold, flood-prone areas are identified using a maximum likelihood method. The threshold is estimated by comparing the TWI to inundation profiles from a two-dimensional (2D) hydrodynamic model (TELEMAC 2D), calculated for various rainfall depths within a given spatial window. The two approaches are applied to two flooding hotspots in Berlin, which have been repeatedly subject to pluvial flooding in the last decades and the outputs are compared against the detailed output from TELEMAC 2D. </p>


Sign in / Sign up

Export Citation Format

Share Document