scholarly journals Forcing of polar motion in the Chandler frequency band: An opportunity to evaluate interannual climate variations

Eos ◽  
2005 ◽  
Vol 86 (3) ◽  
pp. 26 ◽  
Author(s):  
H.-P. Plag ◽  
B. F. Chao ◽  
R. S. Gross ◽  
T. Van Dam
1988 ◽  
Vol 128 ◽  
pp. 359-364 ◽  
Author(s):  
Jan Vondrák

The observed polar motion in the period 1860–1985 is analyzed in order to decide whether Chandler frequency was constant. It is shown that while the phase of annual wobble was very stable throughout the interval in question, Chandler wobble phase was subject to sometimes very rapid changes. The most pronounced negative phase changes were always accompanied by extremely low amplitudes, and a significant correlation was found between Chandler wobble phase and its integrated amplitude. The most probable explanation is that the frequency of Chandler wobble is variable and amplitude-dependent, which might be caused by non-equilibrium response of the ocean.


2000 ◽  
Vol 178 ◽  
pp. 555-564
Author(s):  
V.E. Zharov ◽  
S.L. Pasynok

AbstractThe atmospheric effective angular momentum functions were used to study the excitation of the diurnal polar motion and nutation. The main effect on polar motion at the frequency of the S1 tide is up to 10 µas, and on the annual prograde nutation term is up to 0.1 mas. The atmosphere and viscosity of the outer core of the Earth were taken into account in calculating the transfer function.The atmosphere treated as a thin rotating layer gives two new eigen-modes or two new resonance frequencies in the Earth’s transfer function, and one of them is in the diurnal frequency band. Viscosity of the fluid outer core and choice of the Earth’s model change the nearly diurnal frequencies of the normal modes.


1972 ◽  
Vol 1 ◽  
pp. 93-101 ◽  
Author(s):  
S. Yumi

ABSTRACTAnalysing the residual latitude of the station, local trend in latitude variation other than by the polar motion was found.Residual latitude was calculated for each of 26 stations which gave the continuous records of observation during 6 years comprising — 1962 — 1967 as a difference between observed variation of latitude and – normal variation calculated by the polar coordinates Iderived from all the results of 26 stations.As far as the results during these six years are concerned, local trend at any station it seemed to be expressed in terms of 3λ.Assumed effect of local trend on the coordinates values of the instantaneous pole is also discussed.


1972 ◽  
Vol 1 ◽  
pp. 77-85
Author(s):  
H.J.M. Abraham ◽  
J.N. Boots

This paper suggests that some of the reported changes in the Chandler frequency are associated with inelastic changes in the Earth. There has been controversy as to how much of the apparent secular polar drift is due to actual motion of the axis of rotation within the Earth, and how much it is merely the reflection of movements by certain observatories. Therefore, when more southern data are available it will be interesting to see whether similar results are obtained.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


Sign in / Sign up

Export Citation Format

Share Document