Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses

2005 ◽  
Vol 110 (D23) ◽  
Author(s):  
John E. Janowiak ◽  
Vernon E. Kousky ◽  
Robert J. Joyce
2019 ◽  
Vol 11 (15) ◽  
pp. 1781 ◽  
Author(s):  
Daniel Watters ◽  
Alessandro Battaglia

The Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation product derived from the Global Precipitation Measurement (GPM) constellation offers a unique opportunity of observing the diurnal cycle of precipitation in the latitudinal band 60 ° N–S at unprecedented 0.1 ° × 0.1 ° and half-hour resolution. The diurnal cycles of occurrence, intensity and accumulation are determined using four years of data at 2 ° × 2 ° resolution; this study focusses on summertime months when the diurnal cycle shows stronger features. Harmonics are fitted to the diurnal cycle using a non-linear least squares method weighted by random errors. Results suggest that mean-to-peak amplitudes for the diurnal cycles of occurrence and accumulation are greater over land (generally larger than 25% of the diurnal mean), where the diurnal harmonic dominates and peaks at ~16–24 LST, than over ocean (generally smaller than 25%), where the diurnal and semi-diurnal harmonics contribute comparably. Over ocean, the diurnal harmonic peaks at ~0–10 LST (~8–15 LST) over open waters (coastal waters). For intensity, amplitudes of the diurnal and semi-diurnal harmonics are generally comparable everywhere (~15–35%) with the diurnal harmonic peaking at ~20–4 LST (~3–12 LST) over land (ocean), and the semi-diurnal harmonic maximises at ~5–8 LST and 17–20 LST. The diurnal cycle of accumulation is dictated by occurrence as opposed to intensity.


2020 ◽  
Author(s):  
Daniel Watters ◽  
Alessandro Battaglia ◽  
Richard Allan

<p>Representation of the diurnal cycle is a key trial of the ability of models to capture precipitation timing, duration, and intra-daily variations.  The state-of-the-art model simulations from the Coupled Model Intercomparison Project (CMIP6), which are set to inform the upcoming IPCC sixth assessment report, are yet to be compared to the diurnal cycle of precipitation according to observations.  The recently released version 6 of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) product provides over 19 years of global-gridded observations (June 2000 - Present).  Such state-of-the-art observations, with inputs from space-borne dual-frequency radar, microwave radiometers, infrared sensors and ground-based gauges, have never been available at 0.1˚ gridding every half hour over such a long period.  This study aims to compare the amplitude and time of maximum precipitation accumulation between IMERG observations and CMIP6 models over an 8-year period (June 2000 – May 2008).  Preliminary results suggest that the CMIP6 models typically underestimate the amplitude of precipitation accumulation over land compared to observations, though there are overestimates in the Amazon and across central Africa.  Furthermore, the CMIP6 models typically lag behind observations in their time of maximum accumulation over land; observations suggest a late evening to night maximum whilst CMIP6 models show a late morning to early afternoon maximum.  The results will be beneficial to improving modelling of precipitation across the globe.</p>


2021 ◽  
Vol 149 (10) ◽  
pp. 3449-3468
Author(s):  
Joshua Chun Kwang Lee ◽  
Anurag Dipankar ◽  
Xiang-Yu Huang

AbstractThe diurnal cycle is the most prominent mode of rainfall variability in the tropics, governed mainly by the strong solar heating and land–sea interactions that trigger convection. Over the western Maritime Continent, complex orographic and coastal effects can also play an important role. Weather and climate models often struggle to represent these physical processes, resulting in substantial model biases in simulations over the region. For numerical weather prediction, these biases manifest themselves in the initial conditions, leading to phase and amplitude errors in the diurnal cycle of precipitation. Using a tropical convective-scale data assimilation system, we assimilate 3-hourly radiosonde data from the pilot field campaign of the Years of Maritime Continent, in addition to existing available observations, to diagnose the model biases and assess the relative impacts of the additional wind, temperature, and moisture information on the simulated diurnal cycle of precipitation over the western coast of Sumatra. We show how assimilating such high-frequency in situ observations can improve the simulated diurnal cycle, verified against satellite-derived precipitation, radar-derived precipitation, and rain gauge data. The improvements are due to a better representation of the sea breeze and increased available moisture in the lowest 4 km prior to peak convection. Assimilating wind information alone was sufficient to improve the simulations. We also highlight how during the assimilation, certain multivariate background error constraints and moisture addition in an ad hoc manner can negatively impact the simulations. Other approaches should be explored to better exploit information from such high-frequency observations over this region.


SOLA ◽  
2016 ◽  
Vol 12 (0) ◽  
pp. 272-276 ◽  
Author(s):  
Hisashi Yashiro ◽  
Yoshiyuki Kajikawa ◽  
Yoshiaki Miyamoto ◽  
Tsuyoshi Yamaura ◽  
Ryuji Yoshida ◽  
...  

2012 ◽  
Vol 140 (8) ◽  
pp. 2689-2705 ◽  
Author(s):  
Marc Berenguer ◽  
Madalina Surcel ◽  
Isztar Zawadzki ◽  
Ming Xue ◽  
Fanyou Kong

Abstract This second part of a two-paper series compares deterministic precipitation forecasts from the Storm-Scale Ensemble Forecast System (4-km grid) run during the 2008 NOAA Hazardous Weather Testbed (HWT) Spring Experiment, and from the Canadian Global Environmental Multiscale (GEM) model (15 km), in terms of their ability to reproduce the average diurnal cycle of precipitation during spring 2008. Moreover, radar-based nowcasts generated with the McGill Algorithm for Precipitation Nowcasting Using Semi-Lagrangian Extrapolation (MAPLE) are analyzed to quantify the portion of the diurnal cycle explained by the motion of precipitation systems, and to evaluate the potential of the NWP models for very short-term forecasting. The observed diurnal cycle of precipitation during spring 2008 is characterized by the dominance of the 24-h harmonic, which shifts with longitude, consistent with precipitation traveling across the continent. Time–longitude diagrams show that the analyzed NWP models partially reproduce this signal, but show more variability in the timing of initiation in the zonal motion of the precipitation systems than observed from radar. Traditional skill scores show that the radar data assimilation is the main reason for differences in model performance, while the analyzed models that do not assimilate radar observations have very similar skill. The analysis of MAPLE forecasts confirms that the motion of precipitation systems is responsible for the dominance of the 24-h harmonic in the longitudinal range 103°–85°W, where 8-h MAPLE forecasts initialized at 0100, 0900, and 1700 UTC successfully reproduce the eastward motion of rainfall systems. Also, on average, MAPLE outperforms radar data assimilating models for the 3–4 h after initialization, and nonradar data assimilating models for up to 5 h after initialization.


Sign in / Sign up

Export Citation Format

Share Document