scholarly journals Dynamic coupling of volcanic CO2flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California

2007 ◽  
Vol 34 (3) ◽  
Author(s):  
J. L. Lewicki ◽  
G. E. Hilley ◽  
T. Tosha ◽  
R. Aoyagi ◽  
K. Yamamoto ◽  
...  
1998 ◽  
Vol 25 (11) ◽  
pp. 1947-1950 ◽  
Author(s):  
Terrence M. Gerlach ◽  
Michael P. Doukas ◽  
Kenneth A. McGee ◽  
Richard Kessler

Kerntechnik ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. 265-273 ◽  
Author(s):  
V. I. Romanenko ◽  
V. G. Zimin ◽  
S. P. Nikonov ◽  
G. V. Tikhomirov ◽  
Y. Perin ◽  
...  

2021 ◽  
Vol 184 ◽  
pp. 372-379
Author(s):  
Darko Frtunik ◽  
Amolika Sinha ◽  
Hanna Grzybowska ◽  
Navreet Virdi ◽  
S. Travis Waller ◽  
...  

2020 ◽  
Vol 86 (1) ◽  
pp. 203-205
Author(s):  
A.J. White ◽  
Samuel E. Munoz ◽  
Sissel Schroeder ◽  
Lora R. Stevens

Skousen and Aiuvalasit critique our article on the post-Mississippian occupation of the Horseshoe Lake watershed (White et al. 2020) along two lines: (1) that our findings are not supported due to a lack of archaeological evidence, and (2) that we do not consider alternative hypotheses in explaining the lake's fecal stanol record. We first respond to the matter of fecal stanol deposition in Horseshoe Lake and then address the larger issue, the primacy of archaeological data in interpreting the past.


2021 ◽  
Vol 9 (2) ◽  
pp. 179
Author(s):  
Giovanni Amaral ◽  
Pedro Mello ◽  
Lucas do Carmo ◽  
Izabela Alberto ◽  
Edgard Malta ◽  
...  

The present work highlights some of the dynamic couplings observed in a series of tests performed in a wave basin with a scaled-model of a Floating Offshore Wind Turbine (FOWT) with semi-submersible substructure. The model was moored by means of a conventional chain catenary system and an actively controlled fan was used for emulating the thrust loads during the tests. A set of wave tests was performed for concomitant effects of not aligned wave and wind. The experimental measurements illustrate the main coupling effects involved and how they affect the FOWT motions in waves, especially when the floater presents a non-negligible tilt angle. In addition, a frequency domain numerical analysis was performed in order to evaluate its ability to capture these effects properly. The influence of different modes of fan response, floater trim angles (changeable with ballast compensation) and variations in the mooring stiffness with the offsets were investigated in the analysis. Results attest that significant changes in the FOWT responses may indeed arise from coupling effects, thus indicating that caution must be taken when simplifying the hydrodynamic frequency-domain models often used as a basis for the simulation of FOWTs in waves and in optimization procedures for the design of the floater and mooring lines.


2021 ◽  
Vol 423 ◽  
pp. 132928
Author(s):  
A. Arellano-Delgado ◽  
R.M. López-Gutiérrez ◽  
R. Méndez-Ramírez ◽  
L. Cardoza-Avendaño ◽  
C. Cruz-Hernández

Sign in / Sign up

Export Citation Format

Share Document