scholarly journals Continental-scale multiobservation calibration and assessment of Colorado State University Unified Land Model by application of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo

Author(s):  
Toshihisa Matsui ◽  
Adriana Beltrán-Przekurat ◽  
Roger A. Pielke ◽  
Dev Niyogi ◽  
Michael B. Coughenour
2021 ◽  
Vol 13 (2) ◽  
pp. 227
Author(s):  
Arthur Elmes ◽  
Charlotte Levy ◽  
Angela Erb ◽  
Dorothy K. Hall ◽  
Ted A. Scambos ◽  
...  

In mid-June 2019, the Greenland ice sheet (GrIS) experienced an extreme early-season melt event. This, coupled with an earlier-than-average melt onset and low prior winter snowfall over western Greenland, led to a rapid decrease in surface albedo and greater solar energy absorption over the melt season. The 2019 melt season resulted in significantly more melt than other recent years, even compared to exceptional melt years previously identified in the moderate-resolution imaging spectroradiometer (MODIS) record. The increased solar radiation absorbance in 2019 warmed the surface and increased the rate of meltwater production. We use two decades of satellite-derived albedo from the MODIS MCD43 record to show a significant and extended decrease in albedo in Greenland during 2019. This decrease, early in the melt season and continuing during peak summer insolation, caused increased radiative forcing of the ice sheet of 2.33 Wm−2 for 2019. Radiative forcing is strongly influenced by the dramatic seasonal differences in surface albedo experienced by any location experiencing persistent and seasonal snow-cover. We also illustrate the utility of the newly developed Landsat-8 albedo product for better capturing the detailed spatial heterogeneity of the landscape, leading to a more refined representation of the surface energy budget. While the MCD43 data accurately capture the albedo for a given 500 m pixel, the higher spatial resolution 30 m Landsat-8 albedos more fully represent the detailed landscape variations.


2014 ◽  
Vol 8 (3) ◽  
pp. 1069-1086 ◽  
Author(s):  
S. Lhermitte ◽  
J. Abermann ◽  
C. Kinnard

Abstract. Both satellite and ground-based broadband albedo measurements over rough and complex terrain show several limitations concerning feasibility and representativeness. To assess these limitations and understand the effect of surface roughness on albedo, firstly, an intrasurface radiative transfer (ISRT) model is combined with albedo measurements over different penitente surfaces on Glaciar Tapado in the semi-arid Andes of northern Chile. Results of the ISRT model show effective albedo reductions over the penitentes up to 0.4 when comparing the rough surface albedo relative to the albedo of the flat surface. The magnitude of these reductions primarily depends on the opening angles of the penitentes, but the shape of the penitentes and spatial variability of the material albedo also play a major role. Secondly, the ISRT model is used to reveal the effect of using albedo measurements at a specific location (i.e., apparent albedo) to infer the true albedo of a penitente field (i.e., effective albedo). This effect is especially strong for narrow penitentes, resulting in sampling biases of up to ±0.05. The sampling biases are more pronounced when the sensor is low above the surface, but remain relatively constant throughout the day. Consequently, it is important to use a large number of samples at various places and/or to locate the sensor sufficiently high in order to avoid this sampling bias of surface albedo over rough surfaces. Thirdly, the temporal evolution of broadband albedo over a penitente-covered surface is analyzed to place the experiments and their uncertainty into a longer temporal context. Time series of albedo measurements at an automated weather station over two ablation seasons reveal that albedo decreases early in the ablation season. These decreases stabilize from February onwards with variations being caused by fresh snowfall events. The 2009/2010 and 2011/2012 seasons differ notably, where the latter shows lower albedo values caused by larger penitentes. Finally, a comparison of the ground-based albedo observations with Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer)-derived albedo showed that both satellite albedo products capture the albedo evolution with root mean square errors of 0.08 and 0.15, respectively, but also illustrate their shortcomings related to temporal resolution and spatial heterogeneity over small mountain glaciers.


2014 ◽  
Vol 7 (2) ◽  
pp. 1671-1707
Author(s):  
J. Kala ◽  
J. P. Evans ◽  
A. J. Pitman ◽  
C. B. Schaaf ◽  
M. Decker ◽  
...  

Abstract. Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) albedo. We compare results from two offline simulations over the Australian continent, one with prescribed background snow-free and vegetation-free soil albedo derived from MODIS (the control), and the other with a simple parameterisation based on soil moisture and colour. The control simulation shows that CABLE simulates albedo over Australia reasonably well, with differences with MODIS within an acceptable range. Inclusion of the parameterisation for soil albedo however introduced large errors for the near infra red albedo, especially for desert regions of central Australia. These large errors were not fully explained by errors in soil moisture or parameter uncertainties, but are similar to errors in albedo in other land surface models which use the same soil albedo scheme. Although this new parameterisation has introduced larger errors as compared to prescribing soil albedo, dynamic soil moisture-albedo feedbacks are now enabled in CABLE. Future directions for albedo parameterisations development in CABLE are discussed.


2015 ◽  
Vol 9 (6) ◽  
pp. 2057-2070 ◽  
Author(s):  
D. Singh ◽  
M. G. Flanner ◽  
J. Perket

Abstract. The shortwave cryosphere radiative effect (CrRE) is the instantaneous influence of snow and ice cover on Earth's top-of-atmosphere (TOA) solar energy budget. Here, we apply measurements from the MODerate resolution Imaging Spectroradiometer (MODIS), combined with microwave retrievals of snow presence and radiative kernels produced from four different models, to derive CrRE over global land during 2001–2013. We estimate global annual-mean land CrRE during this period of −2.6 W m−2, with variations from −2.2 to −3.0 W m−2 resulting from use of different kernels and variations of −2.4 to −2.6 W m−2 resulting from different algorithmic determinations of snow presence and surface albedo. Slightly more than half of the global land CrRE originates from perennial snow on Antarctica, whereas the majority of the northern hemispheric effect originates from seasonal snow. Consequently, the northern hemispheric land CrRE peaks at −6.0 W m−2 in April, whereas the southern hemispheric effect more closely follows the austral insolation cycle, peaking at −9.0 W m−2 in December. Mountain glaciers resolved in 0.05° MODIS data contribute about −0.037 W m−2 (1.4 %) of the global effect, with the majority (94 %) of this contribution originating from the Himalayas. Interannual trends in the global annual-mean land CrRE are not statistically significant during the MODIS era, but trends are positive (less negative) over large areas of northern Asia, especially during spring, and slightly negative over Antarctica, possibly due to increased snowfall. During a common overlap period of 2001–2008, our MODIS estimates of the northern hemispheric land CrRE are about 18 % smaller (less negative) than previous estimates derived from coarse-resolution AVHRR data, though interannual variations are well correlated (r = 0.78), indicating that these data are useful in determining longer-term trends in land CrRE.


Author(s):  
Zhenzhen Wang ◽  
Jianjun Zhao ◽  
Jiawen Xu ◽  
Mingrui Jia ◽  
Han Li ◽  
...  

Northeast China is China’s primary grain production base. A large amount of crop straw is incinerated every spring and autumn, which greatly impacts air quality. To study the degree of influence of straw burning on urban pollutant concentrations, this study used The Moderate-Resolution Imaging Spectroradiometer/Terra Thermal Anomalies & Fire Daily L3 Global 1 km V006 (MOD14A1) and The Moderate-Resolution Imaging Spectroradiometer/Aqua Thermal Anomalies and Fire Daily L3 Global 1 km V006 (MYD14A1) data from 2015 to 2017 to extract fire spot data on arable land burning and to study the spatial distribution characteristics of straw burning on urban pollutant concentrations, temporal variation characteristics and impact thresholds. The results show that straw burning in Northeast China is concentrated in spring and autumn; the seasonal spatial distributions of PM2.5, PM10 andAir Quality Index (AQI) in 41 cities or regions in Northeast China correspond to the seasonal variation of fire spots; and pollutants appear in the peak periods of fire spots. In areas where the concentration coefficient of rice or corn is greater than 1, the number of fire spots has a strong correlation with the urban pollution index. The correlation coefficient R between the number of burned fire spots and the pollutant concentration has a certain relationship with the urban distribution. Cities are aggregated in geospatial space with different R values.


2021 ◽  
Vol 13 (15) ◽  
pp. 2895
Author(s):  
Maria Gavrouzou ◽  
Nikolaos Hatzianastassiou ◽  
Antonis Gkikas ◽  
Christos J. Lolis ◽  
Nikolaos Mihalopoulos

A satellite algorithm able to identify Dust Aerosols (DA) is applied for a climatological investigation of Dust Aerosol Episodes (DAEs) over the greater Mediterranean Basin (MB), one of the most climatologically sensitive regions of the globe. The algorithm first distinguishes DA among other aerosol types (such as Sea Salt and Biomass Burning) by applying threshold values on key aerosol optical properties describing their loading, size and absorptivity, namely Aerosol Optical Depth (AOD), Aerosol Index (AI) and Ångström Exponent (α). The algorithm operates on a daily and 1° × 1° geographical cell basis over the 15-year period 2005–2019. Daily gridded spectral AOD data are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Collection 6.1, and are used to calculate the α data, which are then introduced into the algorithm, while AI data are obtained by the Ozone Monitoring Instrument (OMI) -Aura- Near-UV aerosol product OMAERUV dataset. The algorithm determines the occurrence of Dust Aerosol Episode Days (DAEDs), whenever high loads of DA (higher than their climatological mean value plus two/four standard deviations for strong/extreme DAEDs) exist over extended areas (more than 30 pixels or 300,000 km2). The identified DAEDs are finally grouped into Dust Aerosol Episode Cases (DAECs), consisting of at least one DAED. According to the algorithm results, 166 (116 strong and 50 extreme) DAEDs occurred over the MB during the study period. DAEDs are observed mostly in spring (47%) and summer (38%), with strong DAEDs occurring primarily in spring and summer and extreme ones in spring. Decreasing, but not statistically significant, trends of the frequency, spatial extent and intensity of DAECs are revealed. Moreover, a total number of 98 DAECs was found, primarily in spring (46 DAECs) and secondarily in summer (36 DAECs). The seasonal distribution of the frequency of DAECs varies geographically, being highest in early spring over the eastern Mediterranean, in late spring over the central Mediterranean and in summer over the western MB.


2021 ◽  
Vol 13 (5) ◽  
pp. 920
Author(s):  
Zhongting Wang ◽  
Ruru Deng ◽  
Pengfei Ma ◽  
Yuhuan Zhang ◽  
Yeheng Liang ◽  
...  

Aerosol distribution with fine spatial resolution is crucial for atmospheric environmental management. This paper proposes an improved algorithm of aerosol retrieval from 250-m Medium Resolution Spectral Image (MERSI) data of Chinese FY-3 satellites. A mixing model of soil and vegetation was used to calculate the parameters of the algorithm from moderate-resolution imaging spectroradiometer (MODIS) reflectance products in 500-m resolution. The mixing model was used to determine surface reflectance in blue band, and the 250-m aerosol optical depth (AOD) was retrieved through removing surface contributions from MERSI data over Guangzhou. The algorithm was used to monitor two pollution episodes in Guangzhou in 2015, and the results displayed an AOD spatial distribution with 250-m resolution. Compared with the yearly average of MODIS aerosol products in 2015, the 250-m resolution AOD derived from the MERSI data exhibited great potential for identifying air pollution sources. Daily AODs derived from MERSI data were compared with ground results from CE318 measurements. The results revealed a correlation coefficient between the AODs from MERSI and those from the ground measurements of approximately 0.85, and approximately 68% results were within expected error range of ±(0.05 + 15%τ).


Sign in / Sign up

Export Citation Format

Share Document