scholarly journals Linking global to regional models to assess future climate impacts on surface ozone levels in the United States

2008 ◽  
Vol 113 (D14) ◽  
Author(s):  
Christopher G. Nolte ◽  
Alice B. Gilliland ◽  
Christian Hogrefe ◽  
Loretta J. Mickley
2016 ◽  
Vol 43 (17) ◽  
pp. 9280-9288 ◽  
Author(s):  
Daniel Tong ◽  
Li Pan ◽  
Weiwei Chen ◽  
Lok Lamsal ◽  
Pius Lee ◽  
...  

2008 ◽  
Vol 42 (35) ◽  
pp. 8252-8262 ◽  
Author(s):  
Allen S. Lefohn ◽  
Douglas Shadwick ◽  
Samuel J. Oltmans

Author(s):  
Hill and

Even for the largest economy in the world, ever-larger climate bailouts are not a responsible solution to confronting present and future climate impacts. Governments everywhere, including in the United States, will have to raise unprecedented amounts of money to cope with the impacts of climate change. This chapter examines how communities can raise the money needed, and how can they do so while keeping the financial strain as low as possible. It highlights some traditional solutions, such as taxes, borrowing, and buying reinsurance, alongside newer ideas, such as setting up special reserve funds, using value capture, raising funds from carbon taxes and cap-and-trade mechanisms, and issuing green and catastrophe bonds.


2010 ◽  
Vol 2 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Kyle Andrew Poyar ◽  
Nancy Beller-Simms

Abstract State and local governments in the United States manage a wide array of natural and human resources that are particularly sensitive to climate variability and change. Recent revelations of the extent of the current and potential climate impact in this realm such as with the quality of water, the structure of the coasts, and the potential and witnessed impact on the built infrastructure give these political authorities impetus to minimize their vulnerability and plan for the future. In fact, a growing number of subnational government bodies in the United States have initiated climate adaptation planning efforts; these initiatives emphasize an array of climate impacts, but at different scales, scopes, and levels of sophistication. Meanwhile, the current body of climate adaptation literature has not taken a comprehensive look at these plans nor have they questioned what prompts local adaptation planning, at what scope and scale action is being taken, or what prioritizes certain policy responses over others. This paper presents a case-based analysis of seven urban climate adaptation planning initiatives, drawing from a review of publicly available planning documents and interviews with stakeholders directly involved in the planning process to provide a preliminary understanding of these issues. The paper also offers insight into the state of implementation of adaptation strategies, highlighting the role of low upfront costs and cobenefits with issues already on the local agenda in prompting anticipatory adaptation.


2011 ◽  
Vol 45 (28) ◽  
pp. 4845-4857 ◽  
Author(s):  
Allen S. Lefohn ◽  
Heini Wernli ◽  
Douglas Shadwick ◽  
Sebastian Limbach ◽  
Samuel J. Oltmans ◽  
...  

2021 ◽  
Author(s):  
Yabin Da ◽  
Yangyang Xu ◽  
Bruce McCarl

<p>Surface ozone pollution has been proven to impose significant damages on crops. However, the quantification of the damages was extensively derived from chamber experiments, which is not representative of actual results in farm fields due to the limitations of spatial scale, time window, etc. In this work, we attempt to empirically fill this gap using county-level data in the United States from 1980 to 2015. We explore ozone impacts on corn, soybeans, spring wheat, winter wheat, barley, cotton, peanuts, rice, sorghum, and sunflower. We also incorporate a variety of climate variables to investigate potential ozone-climate interactions. More importantly, we shed light on future yield consequences of ozone and climate change individually and jointly under a moderate warming scenario. Our findings suggest significant negative impacts of ozone exposure for eight of the ten crops we examined, excepting barley and winter wheat, which contradicts experimental results. The average annual damages were estimated at $6.03 billion (in 2015 U.S. dollar) from 1980 to 2015. We also find rising temperatures tend to worsen ozone damages while water supply would mitigate that. Finally, elevated ozone driven by future climate change would cause much smaller damages than the direct effects of climate change itself.</p>


Sign in / Sign up

Export Citation Format

Share Document