scholarly journals Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation

2009 ◽  
Vol 45 (12) ◽  
Author(s):  
Nataliya Bulygina ◽  
Hoshin Gupta
2014 ◽  
Vol 15 (3) ◽  
pp. 1117-1134 ◽  
Author(s):  
Eunjin Han ◽  
Wade T. Crow ◽  
Thomas Holmes ◽  
John Bolten

Abstract Despite considerable interest in the application of land surface data assimilation systems (LDASs) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model, and a sequential data assimilation filter) against a series of linear models that perform the same function (i.e., have the same basic input/output structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moisture/NDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which nonlinearities and/or complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model, and an ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.


2014 ◽  
Vol 519 ◽  
pp. 1848-1858 ◽  
Author(s):  
Francisco Pellicer-Martínez ◽  
José Miguel Martínez-Paz

2019 ◽  
Vol 35 (9) ◽  
pp. 954-975
Author(s):  
Olutoyin Adeola Fashae ◽  
Rotimi Oluseyi Obateru ◽  
Adeyemi Oludapo Olusola

2015 ◽  
Vol 19 (9) ◽  
pp. 3829-3844 ◽  
Author(s):  
J. Hoogeveen ◽  
J.-M. Faurès ◽  
L. Peiser ◽  
J. Burke ◽  
N. van de Giesen

Abstract. GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.


2013 ◽  
Vol 35 (4) ◽  
Author(s):  
Welliam Chaves Monteiro Silva ◽  
Aristides Ribeiro ◽  
Júlio Cesar Lima Neves ◽  
Nairam Felix de Barros ◽  
Fernando Palha Leite

2003 ◽  
Vol 17 (13) ◽  
pp. 2521-2539 ◽  
Author(s):  
Michael A. Rawlins ◽  
Richard B. Lammers ◽  
Steve Frolking ◽  
Bal�zs M. Fekete ◽  
Charles J. Vorosmarty

2016 ◽  
Vol 56 (2-3) ◽  
pp. 109-122 ◽  
Author(s):  
Cornelia Barth ◽  
Douglas P. Boyle ◽  
Benjamin J. Hatchett ◽  
Scott D. Bassett ◽  
Christopher B. Garner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document