scholarly journals Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance

2009 ◽  
Vol 23 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Luyssaert ◽  
M. Reichstein ◽  
E.-D. Schulze ◽  
I. A. Janssens ◽  
B. E. Law ◽  
...  
2007 ◽  
Vol 34 (1) ◽  
Author(s):  
Markus Reichstein ◽  
Dario Papale ◽  
Riccardo Valentini ◽  
Marc Aubinet ◽  
Christian Bernhofer ◽  
...  

2021 ◽  
Author(s):  
Xin Yu ◽  
René Orth ◽  
Markus Reichstein ◽  
Ana Bastos

<p>The frequency and severity of droughts are expected to increase in the wake of climate change. Drought events not only cause direct impacts on the ecosystem carbon balance but also result in legacy effects during the following years. These legacies result from, for example, drought damage to the xylem or the crown which causes impaired growth, or from higher vulnerability to pests and diseases. To understand how droughts might affect the carbon cycle in the future, it is important to consider both direct and legacy effects. Such effects likely affect interannual variability in C fluxes but are challenging to detect in observations, and poorly represented in models. Therefore, the patterns and mechanisms inducing the legacy effects of drought on ecosystem carbon balance are necessarily needed to improve.</p><p>In this study, we analyze gross primary productivity (GPP) from eddy-covariance measurements in Germany to detect legacy effects from recent droughts. We follow a data-driven modeling approach using a random forest model trained in different sets of drought and non-drought periods. This approach allows quantifying legacy effects as deviations of observed GPP from modeled GPP in legacy years, which indicates a change in the vegetation response to hydro-climatic conditions as compared with the training period.</p>


2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2020 ◽  
Author(s):  
Marcos Fernández-Martínez ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
Ivan Janssens

<p>Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.</p>


2011 ◽  
Vol 141 (3-4) ◽  
pp. 342-349 ◽  
Author(s):  
Carmela B.M. Arevalo ◽  
Jagtar S. Bhatti ◽  
Scott X. Chang ◽  
Derek Sidders

2016 ◽  
Vol 554-555 ◽  
pp. 293-302 ◽  
Author(s):  
Xi Li ◽  
Yo Toma ◽  
Jagadeesh Yeluripati ◽  
Shinya Iwasaki ◽  
Sonoko D. Bellingrath-Kimura ◽  
...  

2020 ◽  
Vol 26 (12) ◽  
pp. 7067-7078
Author(s):  
Marcos Fernández‐Martínez ◽  
Jordi Sardans ◽  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Maitane Iturrate‐Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document