Legacy effects of drought on gross primary productivity from eddy-covariance measurements

Author(s):  
Xin Yu ◽  
René Orth ◽  
Markus Reichstein ◽  
Ana Bastos

<p>The frequency and severity of droughts are expected to increase in the wake of climate change. Drought events not only cause direct impacts on the ecosystem carbon balance but also result in legacy effects during the following years. These legacies result from, for example, drought damage to the xylem or the crown which causes impaired growth, or from higher vulnerability to pests and diseases. To understand how droughts might affect the carbon cycle in the future, it is important to consider both direct and legacy effects. Such effects likely affect interannual variability in C fluxes but are challenging to detect in observations, and poorly represented in models. Therefore, the patterns and mechanisms inducing the legacy effects of drought on ecosystem carbon balance are necessarily needed to improve.</p><p>In this study, we analyze gross primary productivity (GPP) from eddy-covariance measurements in Germany to detect legacy effects from recent droughts. We follow a data-driven modeling approach using a random forest model trained in different sets of drought and non-drought periods. This approach allows quantifying legacy effects as deviations of observed GPP from modeled GPP in legacy years, which indicates a change in the vegetation response to hydro-climatic conditions as compared with the training period.</p>

2007 ◽  
Vol 34 (1) ◽  
Author(s):  
Markus Reichstein ◽  
Dario Papale ◽  
Riccardo Valentini ◽  
Marc Aubinet ◽  
Christian Bernhofer ◽  
...  

2010 ◽  
Vol 7 (3) ◽  
pp. 3735-3763 ◽  
Author(s):  
K. Fenn ◽  
Y. Malhi ◽  
M. Morecroft ◽  
C. Lloyd ◽  
M. Thomas

Abstract. There exist very few comprehensive descriptions of the productivity and carbon cycling of forest ecosystems. Here we present a description of the components of annual Net Primary Productivity (NPP), Gross Primary Productivity (GPP), autotrophic and heterotrophic respiration, and ecosystem respiration (RECO) for a temperate mixed deciduous woodland at Wytham Woods in southern Britain, calculated using "bottom-up" biometric and chamber measurements (leaf and wood production and soil and stem respiration). These are compared with estimates of these parameters from eddy-covariance measurements made at the same site. NPP was estimated as 7.0±0.8 Mg C ha−1 yr−1, and GPP as 20.3+1.0 Mg C ha−1 yr−1, a value which closely matched to eddy covariance-derived GPP value of 21.1 Mg C ha−1 yr−1. Annual RECO was calculated as 18.9±1.7 Mg C ha−1 yr−1, close to the eddy covariance value of 19.8 Mg C ha−1 yr−1; the seasonal cycle of biometric and eddy covariance RECO estimates also closely matched. The consistency between eddy covariance and biometric measurements substantially strengthens the confidence we attach to each as alternative indicators of site carbon dynamics, and permits an integrated perspective of the ecosystem carbon cycle. 37% of NPP was allocated below ground, and the ecosystem carbon use efficiency (CUE, = NPP/GPP) calculated to be 0.35±0.05, lower than reported for many temperate broadleaved sites.


2009 ◽  
Vol 23 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Luyssaert ◽  
M. Reichstein ◽  
E.-D. Schulze ◽  
I. A. Janssens ◽  
B. E. Law ◽  
...  

2021 ◽  
Vol 102 ◽  
pp. 105275
Author(s):  
Jiasheng Li ◽  
Xiaomin Guo ◽  
Xiaowei Chuai ◽  
Fangjian Xie ◽  
Feng Yang ◽  
...  

2020 ◽  
Author(s):  
Marcos Fernández-Martínez ◽  
Jordi Sardans ◽  
Josep Peñuelas ◽  
Ivan Janssens

<p>Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.</p>


2015 ◽  
Vol 112 (9) ◽  
pp. 2788-2793 ◽  
Author(s):  
Jianyang Xia ◽  
Shuli Niu ◽  
Philippe Ciais ◽  
Ivan A. Janssens ◽  
Jiquan Chen ◽  
...  

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Sign in / Sign up

Export Citation Format

Share Document