scholarly journals Sensitivity of bare soil albedo to surface soil moisture on the moraine of the Zongo glacier (Bolivia)

2009 ◽  
Vol 36 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Gascoin ◽  
A. Ducharne ◽  
P. Ribstein ◽  
E. Perroy ◽  
P. Wagnon
2014 ◽  
Vol 13 (1) ◽  
pp. vzj2013.04.0075 ◽  
Author(s):  
M. Dimitrov ◽  
J. Vanderborght ◽  
K. G. Kostov ◽  
K. Z. Jadoon ◽  
L. Weihermüller ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5540 ◽  
Author(s):  
Maria Casamitjana ◽  
Maria C. Torres-Madroñero ◽  
Jaime Bernal-Riobo ◽  
Diego Varga

Surface soil moisture is an important hydrological parameter in agricultural areas. Periodic measurements in tropical mountain environments are poorly representative of larger areas, while satellite resolution is too coarse to be effective in these topographically varied landscapes, making spatial resolution an important parameter to consider. The Las Palmas catchment area near Medellin in Colombia is a vital water reservoir that stores considerable amounts of water in its andosol. In this tropical Andean setting, we use an unmanned aerial vehicle (UAV) with multispectral (visible, near infrared) sensors to determine the correlation of three agricultural land uses (potatoes, bare soil, and pasture) with surface soil moisture. Four vegetation indices (the perpendicular drought index, PDI; the normalized difference vegetation index, NDVI; the normalized difference water index, NDWI, and the soil-adjusted vegetation index, SAVI) were applied to UAV imagery and a 3 m resolution to estimate surface soil moisture through calibration with in situ field measurements. The results showed that on bare soil, the indices that best fit the soil moisture results are NDVI, NDWI and PDI on a detailed scale, whereas on potatoes crops, the NDWI is the index that correlates significantly with soil moisture, irrespective of the scale. Multispectral images and vegetation indices provide good soil moisture understanding in tropical mountain environments, with 3 m remote sensing images which are shown to be a good alternative to soil moisture analysis on pastures using the NDVI and UAV images for bare soil and potatoes.


2020 ◽  
Author(s):  
Sarah Schönbrodt-Stitt ◽  
Paolo Nasta ◽  
Nima Ahmadian ◽  
Markus Kurtenbach ◽  
Christopher Conrad ◽  
...  

<p>Mapping near-surface soil moisture (<em>θ</em>) is of tremendous relevance for a broad range of environment-related disciplines and meteorological, ecological, hydrological and agricultural applications. Globally available products offer the opportunity to address <em>θ</em> in large-scale modelling with coarse spatial resolution such as at the landscape level. However, <em>θ</em> estimation at higher spatial resolution is of vital importance for many small-scale applications. Therefore, we focus our study on a small-scale catchment (MFC2) belonging to the “Alento” hydrological observatory, located in southern Italy (Campania Region). The goal of this study is to develop new machine-learning approaches to estimate high grid-resolution (about 17 m cell size) <em>θ</em> maps from mainly backscatter measurements retrieved from C-band Synthetic Aperture Radar (SAR) based on Sentinel-1 (S1) images and from gridded terrain attributes. Thus, a workflow comprising a total of 48 SAR-based <em>θ</em> patterns estimated for 24 satellite overpass dates (revisit time of 6 days) each with ascendant and descendent orbits will be presented. To enable for the mapping, SAR-based <em>θ</em> data was calibrated with in-situ measurements carried out with a portable device during eight measurement campaigns at time of satellite overpasses (four overpass days in total with each ascendant and descendent satellite overpasses per day in November 2018). After the calibration procedure, data validation was executed from November 10, 2018 till March 28, 2019 by using two stationary sensors monitoring <em>θ</em> at high-temporal (1-min recording time). The specific sensor locations reflected two contrasting field conditions, one bare soil plot (frequently kept clear, without disturbance of vegetation cover) and one non-bare soil plot (real-world condition). Point-scale ground observations of <em>θ</em> were compared to pixel-scale (17 m × 17 m), SAR-based <em>θ</em> estimated for those pixels corresponding to the specific positions of the stationary sensors. Mapping performance was estimated through the root mean squared error (RMSE). For a short-term time series of <em>θ</em> (Nov 2018) integrating 136 in situ, sensor-based <em>θ</em> (<em>θ</em><sub>insitu</sub>) and 74 gravimetric-based <em>θ</em> (<em>θ</em><sub>gravimetric</sub>) measurements during a total of eight S1 overpasses, mapping performance already proved to be satisfactory with RMSE=0.039 m³m<sup>-</sup>³ and R²=0.92, respectively with RMSE=0.041 m³m<sup>-</sup>³ and R²=0.91. First results further reveal that estimated satellite-based <em>θ</em> patterns respond to the evolution of rainfall. With our workflow developed and results, we intend to contribute to improved environmental risk assessment by assimilating the results into hydrological models (e.g., HydroGeoSphere), and to support future studies on combined ground-based and SAR-based <em>θ</em> retrieval for forested land (future missions operating at larger wavelengths e.g. NISARL-band, Biomass P-band sensors).</p>


2013 ◽  
Vol 10 (7) ◽  
pp. 9645-9688 ◽  
Author(s):  
M. Parrens ◽  
J.-F. Mahfouf ◽  
A. Barbu ◽  
J.-C. Calvet

Abstract. Land surface models (LSM) have improved considerably in the last two decades. In this study, the ISBA LSM soil diffusion scheme is used (with 11 soil layers represented). A Simplified Extended Kalman Filter (SEKF) allows surface soil moisture (SSM) to be assimilated in the multi-layer LSM in order to constrain deep soil moisture. In parallel, the same simulations are performed using the ISBA LSM with 2 soil layers (a thin surface layer and a bulk reservoir). Simulations are performed over a 3 yr period (2003–2005) for a bare soil field in southwestern France, at the SMOSREX experimental site. Analyzed soil moisture values correlate better with soil moisture observations when the ISBA LSM soil diffusion scheme is used. The Kalman gain is greater from the surface to 45 cm than below this limit. For dry periods, corrections introduced by the assimilation scheme mainly affect the first 25 cm of soil whereas weaker corrections impact the total soil column for wet periods. Such seasonal corrections cannot be described by the two-layer ISBA LSM. Sensitivity studies performed with the multi-layer LSM show improved results when SSM (0–6 cm) is assimilated into the second layer (1–5 cm) than into the first layer (0–1 cm). The introduction of vertical correlations in the background error covariance matrix is also encouraging. Using a yearly CDF-matching scheme for bias correction instead of matching over the three years permits the seasonal variability of the soil moisture content to be better transcribed. An assimilation experiment has also been performed by forcing ISBA-DF with a local forcing setting precipitation to zero. This experiment shows the benefit of the SSM assimilation for correcting inaccurate atmospheric forcing.


Author(s):  
Xingming Zheng ◽  
Zhuangzhuang Feng ◽  
Lei Li ◽  
Bingzhe Li ◽  
Tao Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document