Evaporation From a Bare Soil Evaluated Using a Soil Water Transfer Model and Remotely Sensed Surface Soil Moisture Data

1984 ◽  
Vol 20 (2) ◽  
pp. 311-316 ◽  
Author(s):  
L. Prevot ◽  
R. Bernard ◽  
O. Taconet ◽  
D. Vidal-Madjar ◽  
J. L. Thony
2008 ◽  
Vol 12 (6) ◽  
pp. 1323-1337 ◽  
Author(s):  
C. Albergel ◽  
C. Rüdiger ◽  
T. Pellarin ◽  
J.-C. Calvet ◽  
N. Fritz ◽  
...  

Abstract. A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content), the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.


2020 ◽  
Vol 12 (8) ◽  
pp. 1242 ◽  
Author(s):  
Sumanta Chatterjee ◽  
Jingyi Huang ◽  
Alfred E. Hartemink

Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.


2019 ◽  
Vol 11 (5) ◽  
pp. 478 ◽  
Author(s):  
Jostein Blyverket ◽  
Paul Hamer ◽  
Laurent Bertino ◽  
Clément Albergel ◽  
David Fairbairn ◽  
...  

A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95 % significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95 % significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products.


2014 ◽  
Vol 13 (1) ◽  
pp. vzj2013.04.0075 ◽  
Author(s):  
M. Dimitrov ◽  
J. Vanderborght ◽  
K. G. Kostov ◽  
K. Z. Jadoon ◽  
L. Weihermüller ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5540 ◽  
Author(s):  
Maria Casamitjana ◽  
Maria C. Torres-Madroñero ◽  
Jaime Bernal-Riobo ◽  
Diego Varga

Surface soil moisture is an important hydrological parameter in agricultural areas. Periodic measurements in tropical mountain environments are poorly representative of larger areas, while satellite resolution is too coarse to be effective in these topographically varied landscapes, making spatial resolution an important parameter to consider. The Las Palmas catchment area near Medellin in Colombia is a vital water reservoir that stores considerable amounts of water in its andosol. In this tropical Andean setting, we use an unmanned aerial vehicle (UAV) with multispectral (visible, near infrared) sensors to determine the correlation of three agricultural land uses (potatoes, bare soil, and pasture) with surface soil moisture. Four vegetation indices (the perpendicular drought index, PDI; the normalized difference vegetation index, NDVI; the normalized difference water index, NDWI, and the soil-adjusted vegetation index, SAVI) were applied to UAV imagery and a 3 m resolution to estimate surface soil moisture through calibration with in situ field measurements. The results showed that on bare soil, the indices that best fit the soil moisture results are NDVI, NDWI and PDI on a detailed scale, whereas on potatoes crops, the NDWI is the index that correlates significantly with soil moisture, irrespective of the scale. Multispectral images and vegetation indices provide good soil moisture understanding in tropical mountain environments, with 3 m remote sensing images which are shown to be a good alternative to soil moisture analysis on pastures using the NDVI and UAV images for bare soil and potatoes.


Sign in / Sign up

Export Citation Format

Share Document