scholarly journals Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun

2009 ◽  
Vol 114 (A4) ◽  
pp. n/a-n/a ◽  
Author(s):  
C. Möstl ◽  
C. J. Farrugia ◽  
C. Miklenic ◽  
M. Temmer ◽  
A. B. Galvin ◽  
...  
2018 ◽  
Vol 864 (2) ◽  
pp. 101 ◽  
Author(s):  
H. Q. Feng ◽  
J. M. Wang ◽  
G. Q. Zhao ◽  
Y. Zhao

2018 ◽  
Vol 619 ◽  
pp. A82
Author(s):  
Man Zhang ◽  
Yu Fen Zhou ◽  
Xue Shang Feng ◽  
Bo Li ◽  
Ming Xiong

In this paper, we have used a three-dimensional numerical magnetohydrodynamics model to study the reconnection process between magnetic cloud and heliospheric current sheet. Within a steady-state heliospheric model that gives a reasonable large-scale structure of the solar wind near solar minimum, we injected a spherical plasmoid to mimic a magnetic cloud. When the magnetic cloud moves to the heliospheric current sheet, the dynamic process causes the current sheet to become gradually thinner and the magnetic reconnection begin. The numerical simulation can reproduce the basic characteristics of the magnetic reconnection, such as the correlated/anticorrelated signatures in V and B passing a reconnection exhaust. Depending on the initial magnetic helicity of the cloud, magnetic reconnection occurs at points along the boundary of the two systems where antiparallel field lines are forced together. We find the magnetic filed and velocity in the MC have a effect on the reconnection rate, and the magnitude of velocity can also effect the beginning time of reconnection. These results are helpful in understanding and identifying the dynamic process occurring between the magnetic cloud and the heliospheric current sheet.


2005 ◽  
Vol 22 (12) ◽  
pp. 3225-3228 ◽  
Author(s):  
Zhong Ding-Kun ◽  
Wei Feng-Si ◽  
Feng Xue-Shang ◽  
Yang Fang

2008 ◽  
Vol 26 (10) ◽  
pp. 3159-3168 ◽  
Author(s):  
K. Steed ◽  
C. J. Owen ◽  
L. K. Harra ◽  
L. M. Green ◽  
S. Dasso ◽  
...  

Abstract. Using Advanced Composition Explorer (ACE) in situ data we identify and describe an interplanetary magnetic cloud (MC) observed near Earth on 13 April 2006. We also use multi-instrument and multi-wavelength observations from the Solar and Heliospheric Observatory (SOHO), the Transition Region and Coronal Explorer (TRACE) and ground-based solar observatories to determine the solar source of this magnetic cloud. A launch window for the MC between 9 and 11 April 2006 was estimated from the propagation time of the ejecta observed near Earth. A number of large active regions (ARs) were present on the Sun during this period, which were initially considered to be the most likely candidate source regions of the MC. However, it was determined that the solar source of the MC was a small, spotless active region observed in the Northern Hemisphere. Following an eruption from this region on 11 April 2006, the ACE spacecraft detected, 59 h later, the passage of the MC, preceded by the arrival of a weak, forward fast shock. The link between the eruption in this active region and the interplanetary MC is supported by several pieces of evidence, including the location of the solar source near to the disk centre and to the east of the central meridian (in agreement with the spacecraft trajectory through the western leg of the magnetic cloud), the propagation time of the ejecta, the agreement between the amount of flux in the magnetic cloud and in the active region, and the agreement between the signs of helicity of the magnetic cloud and the active region (which differs from the sign of helicity of each of the other active regions on the Sun at this time). In addition, the active region is located on the boundary of a coronal hole, and a high speed solar wind stream originating from this region is observed near Earth shortly after the passage of the magnetic cloud.


2008 ◽  
Vol 15 (1) ◽  
pp. 53-59 ◽  
Author(s):  
D. Jankovičovà ◽  
Z. Vörös ◽  
J. Šimkanin

Abstract. The importance of space weather and its forecasting is growing as interest in studying geoeffective processes in the Sun – solar wind – magnetosphere – ionosphere coupled system is increasing. In this paper higher order statistical moments of interplanetary magnetic field and geomagnetic SYM-H index fluctuations are compared. The proper description of fluctuations in the solar wind can elucidate important aspects of the geoeffectivity of upstream turbulence and contribute to our understanding of space weather. Our results indicate that quasi-stationary intervals during both quiet and stormy periods have to be investigated in order to find correlations between upstream and geomagnetic conditions. We found that the fourth statistical moment (kurtosis), which was not considered in previous studies, appears to be a new geoeffective parameter. Intermittency of the magnetic turbulence in the solar wind can influence the efficiency of the solar wind – magnetosphere coupling through affecting magnetic reconnection at the Earth's magnetopause.


2016 ◽  
Vol 823 (1) ◽  
pp. L13 ◽  
Author(s):  
Y. Li ◽  
J. Qiu ◽  
D. W. Longcope ◽  
M. D. Ding ◽  
K. Yang

2008 ◽  
Vol 4 (S259) ◽  
pp. 191-200
Author(s):  
Lidia van Driel-Gesztelyi

AbstractMagnetic reconnection is thought to play an important role in liberating free energy stored in stressed magnetic fields. The consequences vary from undetectable nanoflares to huge flares, which have signatures over a wide wavelength range, depending on e.g. magnetic topology, free energy content, total flux, and magnetic flux density of the structures involved. Events of small energy release, which are thought to be the most numerous, are one of the key factors in the existence of a hot corona in the Sun and solar-like stars. The majority of large flares are ejective, i.e. involve the expulsion of large quantities of mass and magnetic field from the star. Since magnetic reconnection requires small length-scales, which are well below the spatial resolution limits of even the solar observations, we cannot directly observe magnetic reconnection happening. However, there is a plethora of indirect evidences from X-rays to radio observations of magnetic reconnection. I discuss key observational signatures of flares on the Sun and solar-paradigm stellar flares and describe models emphasizing synergy between observations and theory.


2020 ◽  
Author(s):  
Xingyu Zhu ◽  
Jiansen He ◽  
Die Duan ◽  
Lei Zhang ◽  
Liping Yang ◽  
...  

<div>According to Parker's theory in the 1950s, the magnetic lines of force extending from the sun to the interplanetary appear to be Archimedean spirals. From 1960 to 1970, it was found that the interplanetary magnetic field not only follows the Archimedes spiral structure, but also has the characteristics of Alfvenic turbulence. How do these Alfvenic turbulence occur? What will be the characteristics when getting close to the Sun? Parker Solar Probe at 0.17au has found that there are often intermittent Alfvenic pulses (or called Alfvenic velocity spikes) in the solar wind. These pulses are high enough that the disturbed magnetic lines may even turn back. What's more interesting is that there is always a compressibility disturbance along with the Alfven pulse: the temperature and density inside and outside the Alfven pulse are different, the internal temperature is often higher than the external temperature, some of the internal density is higher than the external and some is lower than the external. The Alfven pulse often shows asymmetry on both sides: the magnetic field and velocity on one side are "clean" jumps, while on the other side are multiple small-scale disturbances of variables in the transition boundary layer. In view of this new phenomenon of magnetic field line switch back with compressed Alfven pulse, how it is generated is raising a hot debate. It is thought that the exchange magnetic reconnection of the solar atmosphere may be the underlying physical mechanism. But in the traditional exchange magnetic reconnection image, after reconnection, the zigzag magnetic field line can easily become smooth, which can not maintain the distortion of the magnetic field line, and may not be able to explain the observed Alfven pulses. In this work, we propose a new model called "Excitation of Alfven Pulses by Continuous Intermittent Interchange Reconnection with Guide Field Discontinuity" (EAP-CIIR-GFD). By analyzing and comparing the simulation results and observation results, we find that the model can explain the following observation features: (1) Alfven disturbance is pulse type and asymmetric; (2) Alfven pulse is compressible with the enhancement of internal temperature and the increase or decrease of the internal density; (3) Alfven pulse can cause serious distortion of the magnetic field line. Improvements to the model will also be discussed in the report.</div>


Sign in / Sign up

Export Citation Format

Share Document