scholarly journals Quantification of the gravity wave forcing of the migrating diurnal tide in a gravity wave–resolving general circulation model

Author(s):  
Shingo Watanabe ◽  
Saburo Miyahara
2016 ◽  
Vol 73 (8) ◽  
pp. 3213-3226 ◽  
Author(s):  
Alvaro de la Cámara ◽  
François Lott ◽  
Valérian Jewtoukoff ◽  
Riwal Plougonven ◽  
Albert Hertzog

Abstract The austral stratospheric final warming date is often predicted with substantial delay in several climate models. This systematic error is generally attributed to insufficient parameterized gravity wave (GW) drag in the stratosphere around 60°S. A simulation with a general circulation model [Laboratoire de Météorologie Dynamique zoom model (LMDZ)] with a much less pronounced bias is used to analyze the contribution of the different types of waves to the dynamics of the final warming. For this purpose, the resolved and unresolved wave forcing of the middle atmosphere during the austral spring are examined in LMDZ and reanalysis data, and a good agreement is found between the two datasets. The role of parameterized orographic and nonorographic GWs in LMDZ is further examined, and it is found that orographic and nonorographic GWs contribute evenly to the GW forcing in the stratosphere, unlike in other climate models, where orographic GWs are the main contributor. This result is shown to be in good agreement with GW-resolving operational analysis products. It is demonstrated that the significant contribution of the nonorographic GWs is due to highly intermittent momentum fluxes produced by the source-related parameterizations used in LMDZ, in qualitative agreement with recent observations. This yields sporadic high-amplitude GWs that break in the stratosphere and force the circulation at lower altitudes than more homogeneously distributed nonorographic GW parameterizations do.


2019 ◽  
Vol 77 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Weihua Jie ◽  
Adam A. Scaife ◽  
Martin B. Andrews ◽  
...  

Abstract It is well known that the stratospheric quasi-biennial oscillation (QBO) is forced by equatorial waves with different horizontal/vertical scales, including Kelvin waves, mixed Rossby–gravity (MRG) waves, inertial gravity waves (GWs), and mesoscale GWs, but the relative contribution of each wave is currently not very clear. Proper representation of these waves is critical to the simulation of the QBO in general circulation models (GCMs). In this study, the vertical resolution in the Beijing Climate Center Atmospheric General Circulation Model (BCC-AGCM) is increased to better represent large-scale waves, and a mesoscale GW parameterization scheme, which is coupled to the convective sources, is implemented to provide unresolved wave forcing of the QBO. Results show that BCC-AGCM can spontaneously generate the QBO with realistic periods, amplitudes, and asymmetric features between westerly and easterly phases. There are significant spatiotemporal variations of parameterized convective GWs, largely contributing to a great degree of variability in the simulated QBO. In the eastward wind shear of the QBO at 20 hPa, forcing provided by resolved waves is 0.1–0.2 m s−1 day−1 and forcing provided by parameterized GWs is ~0.15 m s−1 day−1. On the other hand, westward forcings by resolved waves and parameterized GWs are ~0.1 and 0.4–0.5 m s−1 day−1, respectively. It is inferred that the eastward forcing of the QBO is provided by both Kelvin waves and mesoscale convective GWs, whereas the westward forcing is largely provided by mesoscale GWs. MRG waves barely contribute to the formation of the QBO in the model.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 576
Author(s):  
Yixiong Lu ◽  
Tongwen Wu ◽  
Xin Xu ◽  
Li Zhang ◽  
Min Chu

The Antarctic stratospheric final warming (SFW) is usually simulated with a substantial delay in climate models, and the corresponding temperatures in austral spring are lower than observations, implying insufficient stratospheric wave drag. To investigate the role of orographic gravity wave drag (GWD) in modeling the Antarctic SFW, in this study the orographic GWD parameterization scheme is modified in the middle-atmosphere version of the Beijing Climate Center Atmospheric General Circulation Model. A pair of simulations are conducted to compare two orographic GWD schemes in simulating the breakdown of the stratospheric polar vortex over Antarctica. The control simulation with the default orographic GWD scheme exhibits delayed vortex breakdown and the cold-pole bias seen in most climate models. In the simulation with modified orographic GWD scheme, the simulated vortex breaks down earlier by 8 days, and the associated cold-pole bias is reduced by more than 2 K. The modified scheme provides stronger orographic GWD in the lower stratosphere, which drives an accelerated polar downwelling branch of the Brewer–Dobson circulation and, in turn, produces adiabatic warming. Our study suggests that modifying orographic GWD parameterizations in climate models would be a valid way of improving the SFW simulation over Antarctica.


2009 ◽  
Vol 114 (D16) ◽  
Author(s):  
Shingo Watanabe ◽  
Yoshihiro Tomikawa ◽  
Kaoru Sato ◽  
Yoshio Kawatani ◽  
Kazuyuki Miyazaki ◽  
...  

2016 ◽  
Vol 73 (5) ◽  
pp. 1871-1887 ◽  
Author(s):  
Krzysztof Wargan ◽  
Lawrence Coy

Abstract The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.


2016 ◽  
Vol 73 (4) ◽  
pp. 1649-1665 ◽  
Author(s):  
James A. Anstey ◽  
John F. Scinocca ◽  
Martin Keller

Abstract The quasi-biennial oscillation (QBO) of tropical stratospheric zonal winds is simulated in an atmospheric general circulation model and its sensitivity to model parameters is explored. Vertical resolution in the lower tropical stratosphere finer than ≈1 km and sufficiently strong forcing by parameterized nonorographic gravity wave drag are both required for the model to exhibit a QBO-like oscillation. Coarser vertical resolution yields oscillations that are seasonally synchronized and driven mainly by gravity wave drag. As vertical resolution increases, wave forcing in the tropical lower stratosphere increases and seasonal synchronization is disrupted, allowing quasi-biennial periodicity to emerge. Seasonal synchronization could result from the form of wave dissipation assumed in the gravity wave parameterization, which allows downward influence by semiannual oscillation (SAO) winds, whereas dissipation of resolved waves is consistent with radiative damping and no downward influence. Parameterized wave drag is nevertheless required to generate a realistic QBO, effectively acting to amplify the relatively weaker mean-flow forcing by resolved waves.


2006 ◽  
Vol 6 (4) ◽  
pp. 6957-7050 ◽  
Author(s):  
P. Jöckel ◽  
H. Tost ◽  
A. Pozzer ◽  
C. Brühl ◽  
J. Buchholz ◽  
...  

Abstract. The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.


Sign in / Sign up

Export Citation Format

Share Document