scholarly journals Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5on air quality in North America

2010 ◽  
Vol 115 (D16) ◽  
Author(s):  
S. H. Park ◽  
S. L. Gong ◽  
W. Gong ◽  
P. A. Makar ◽  
M. D. Moran ◽  
...  
2018 ◽  
Author(s):  
Marina Astitha ◽  
Ioannis Kioutsoukis ◽  
Ghezae Araya Fisseha ◽  
Roberto Bianconi ◽  
Johannes Bieser ◽  
...  

Abstract. This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (U.S.) and Europe have provided ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May–June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that at a majority of the stations, ozone mixing ratios are under-estimated in the 1–6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower tropospheric ozone mixing ratios (0–2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2–6 km range and overestimate ozone up to the first km possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.


2017 ◽  
Author(s):  
Uarporn Nopmongcol ◽  
Zhen Liu ◽  
Till Stoeckenius ◽  
Greg Yarwood

Abstract. Inter-continental ozone (O3) transport extends the geographic range of O3 air pollution impacts and makes local air pollution management more difficult. Phase 3 of the Air Quality Modeling Evaluation International Initiative (AQMEII-3) is examining the contribution of inter-continental transport to regional air quality by applying regional scale atmospheric models jointly with global models. We investigate methods for tracing O3 from global models within regional models. The CAMx photochemical grid model was used to track contributions from boundary condition (BC) O3 over a North America modeling domain for calendar year 2010 using a built-in tracer module called RTCMC. RTCMC can track BC contributions using chemically reactive tracers and also using inert tracers in which deposition is the only sink for O3. Lack of O3 destruction chemistry in the inert tracer approach leads to over estimation biases that can exceed 10 ppb. The flexibility of RTCMC also allows tracking O3 contributions made by groups of vertical BC layers. The largest BC contributions to seasonal average daily maximum 8-hour averages (MDA8) of O3 over the US are found to be from the mid-troposphere with small contributions from the upper troposphere-lower stratosphere. Contributions from the lower troposphere are shown to not penetrate very far inland. Higher contributions in the Western than the Eastern US, reaching an average of 57 ppb in Denver for the 30 days with highest MDA8 O3 in 2010, present a significant challenge to air quality management approaches based solely on local or US-wide emission reductions. The substantial BC contribution to MDA8 O3 in the Intermountain West means regional models are particularly sensitive to any biases and errors in the BCs. A sensitivity simulation with reduced BC O3 in response to 20 % lower emissions in Asia found a near linear relationship between the BC O3 changes and surface O3 changes in the Western US in all seasons and across the US in fall and winter. However, the surface O3 decreases are small: below 1 ppb in spring and below 0.5 ppb in other seasons.


2007 ◽  
Vol 46 (8) ◽  
pp. 1230-1251 ◽  
Author(s):  
George Kallos ◽  
Marina Astitha ◽  
Petros Katsafados ◽  
Chris Spyrou

Abstract During the past 20 years, organized experimental campaigns as well as continuous development and implementation of air-pollution modeling have led to significant gains in the understanding of the paths and scales of pollutant transport and transformation in the greater Mediterranean region (GMR). The work presented in this paper has two major objectives: 1) to summarize the existing knowledge on the transport paths of particulate matter (PM) in the GMR and 2) to illustrate some new findings related to the transport and transformation properties of PM in the GMR. Findings from previous studies indicate that anthropogenically produced air pollutants from European sources can be transported over long distances, reaching Africa, the Atlantic Ocean, and North America. The PM of natural origin, like Saharan dust, can be transported toward the Atlantic Ocean and North America mostly during the warm period of the year. Recent model simulations and studies in the area indicate that specific long-range transport patterns of aerosols, such as the transport from Asia and the Indian Ocean, central Africa, or America, have negligible or at best limited contribution to air-quality degradation in the GMR when compared with the other sources. Also, new findings from this work suggest that the imposed European Union limits on PM cannot be applicable for southern Europe unless the origin (natural or anthropogenic) of the PM is taken into account. The impacts of high PM levels in the GMR are not limited only to air quality, but also include serious implications for the water budget and the regional climate. These are issues that require extensive investigation because the processes involved are complex, and further model development is needed to include the relevant physicochemical processes properly.


2006 ◽  
Vol 40 (19) ◽  
pp. 3419-3432 ◽  
Author(s):  
Christine Wiedinmyer ◽  
Brad Quayle ◽  
Chris Geron ◽  
Angie Belote ◽  
Don McKenzie ◽  
...  

2010 ◽  
Vol 10 (8) ◽  
pp. 19763-19810 ◽  
Author(s):  
I. Levy ◽  
P. A. Makar ◽  
D. Sills ◽  
J. Zhang ◽  
K. L. Hayden ◽  
...  

Abstract. This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met) field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data and simulation results from a high resolution (2.5 km) regional air-quality model, AURAMS. Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. The land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes during the day time, though they may cause elevated ozone levels in the lake breeze air. A large reservoir layer of ozone is predicted by the AURAMS model over Lake Erie at night, centered between 600–1000 m above ground and extending into the land over Cleveland. The model also predicts a vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake. Oscillations in ground level ozone mixing ratios were observed on several nights and several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min.


Sign in / Sign up

Export Citation Format

Share Document