scholarly journals Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

2010 ◽  
Vol 37 (20) ◽  
pp. n/a-n/a ◽  
Author(s):  
Jinlun Zhang ◽  
Michael Steele ◽  
Axel Schweiger
2021 ◽  
pp. 1-46
Author(s):  
Russell Blackport ◽  
James A. Screen

AbstractDisentangling the contribution of changing Arctic sea ice to midlatitude winter climate variability remains challenging because of the large internal climate variability in midlatitudes, difficulties separating cause from effect, methodological differences, and uncertainty around whether models adequately simulate connections between Arctic sea ice and midlatitude climate. We use regression analysis to quantify the links between Arctic sea ice and midlatitude winter climate in observations and large initial-condition ensembles of multiple climate models, in both coupled configurations and so-called atmospheric model intercomparison project (AMIP) configurations, where observed sea ice and/or sea surface temperatures are prescribed. The coupled models capture the observed links in interannual variability between winter Barents-Kara sea ice and Eurasian surface temperature, and between winter Chukchi-Bering sea ice and North American surface temperature. The coupled models also capture the delayed connection between reduced November-December Barents-Kara sea ice, a weakened winter stratospheric polar vortex, and a shift towards the negative phase of the North Atlantic Oscillation in late winter, although this downward impact is weaker than observed. The strength and sign of the connections both vary considerably between individual 35-year-long ensemble members, highlighting the need for large ensembles to separate robust connections from internal variability. All the aforementioned links are either absent, or substantially weaker, in the AMIP experiments prescribed with only observed sea ice variability. We conclude that the causal effects of sea ice variability on midlatitude winter climate are much weaker than suggested by statistical associations, evident in observations and coupled models, because the statistics are inflated by the effects of atmospheric circulation variability on sea ice.


2021 ◽  
Author(s):  
Steve Delhaye ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
David Docquier ◽  
Christopher Roberts ◽  
...  

<p>The retreat of Arctic sea ice for the last four decades is a primary manifestation of the climate system response to increasing atmospheric greenhouse gas concentrations. This retreat is frequently considered as a possible driver of atmospheric circulation anomalies at mid-latitudes. However, the year-to-year evolution of the Arctic sea ice cover is also characterized by significant fluctuations attributed to internal climate variability. It is unclear how the atmosphere will respond to a near-total retreat of summer Arctic sea ice, a reality that might occur in the foreseeable future. This study uses sensitivity experiments  with higher and lower horizontal resolution configurations of three global coupled climate models to investigate the local and remote atmospheric responses to a reduction in Arctic sea ice cover during the preceding summer. Recognizing that these responses likely depend on the model itself and on its horizontal resolution, and that the model’s internally-generated climate variability may obscure the atmospheric response, we design a protocol to compare each source separately. After imposing a 15-month albedo perturbation resulting in a sudden summer Arctic sea ice loss, the remote mid-latitude climate response has a very low signal-to-noise ratio such that internal climate variability dominates the uncertainty of the response, regardless of the atmospheric variable. Indeed, more than 28, 165 and 210 members are needed to detect a robust response in surface air temperature, precipitation and sea level pressure to sea ice loss in Europe, respectively. Finally, we find that horizontal resolution plays a secondary role in the uncertainty of the atmospheric response to substantial perturbation of Arctic sea ice. These findings suggest that even with higher resolution model configurations, it is important to have large ensemble sizes to increase the signal to noise ratio for the mid-latitude atmospheric response to sea ice changes.</p>


2012 ◽  
Vol 7 (4) ◽  
pp. 044041 ◽  
Author(s):  
Young-Kwon Lim ◽  
Yoo-Geun Ham ◽  
Jee-Hoon Jeong ◽  
Jong-Seong Kug

2021 ◽  
Author(s):  
Rebecca Frew ◽  
Daniel Feltham ◽  
David Schroeder ◽  
Adam Bateson

<p><span>Over the past few decades, as the summer Arctic sea ice cover has been shrinking, the marginal ice zone (MIZ) has been widening. Projections indicate that the majority of the sea ice cover will become marginal (here defined as that region with ice area fractions between 0.15 and 0.8) over the next few decades. The impact of the change in atmospheric forcings on the sea ice cover and MIZ between the 1980s and the 2010s is evaluated using a coupled sea ice (CICE)-mixed layer model, that includes a prognostic floe size-thickness distribution (FSD) model. As the MIZ accounts for a greater fraction of the sea ice cover, some feedbacks with the atmosphere and ocean are expected to strengthen. The role of sea ice feedbacks with the atmosphere and ocean in response to the change in atmospheric conditions between the 1980s to the 2010s are evaluated using feedback denial simulations. In particular: i) the albedo feedback; ii) feedbacks associated with changes to mixed layer stratification (including changes in mixed layer properties) and therefore the ocean heat flux to the sea ice; and iii) changes to the lateral melt rate due to decreasing floe sizes.</span> </p>


Eos ◽  
2014 ◽  
Vol 95 (15) ◽  
pp. 132-132
Author(s):  
JoAnna Wendel

2020 ◽  
Author(s):  
Shuoyi Ding ◽  
Bingyi Wu ◽  
Wen Chen

<p>The present study investigated dominant characteristics of autumn Arctic sea ice concentration (SIC) interannual variations, and examined impacts of SIC anomalies in the East Siberian-Chukchi-Beaufort (EsCB) Seas on winter Eurasian climate variability and the associated possible physical mechanism. Results showed that the Arctic SIC variations in both September and October display a certain continuity to some extent, thus, we chose the September-October (SO) mean SIC as a factor to explore its delayed impacts on winter atmosphere. Dominant features of Arctic SIC variability in SO is characterized by sea ice loss in the EsCB Seas, with more evident interannual variability since the late 1990s. Such a change can be attributed to the central Arctic pattern of atmospheric variability. Along with the global warming, the interannual variation of sea ice in the EsCB Seas seemingly exerts an increasingly role in the Northern Hemispheric climate variability. When the EsCB sea ice decreases in the early autumn (SO), a barotropic response of wave number 2 structure with significant warming and positive geopotential height anomaly dominates the Arctic region a month later. Then, in the early winter (ND(0)J(1)), the Arctic anticyclonic anomaly extends southward into the central-western Eurasia and leads to evident surface cooling there. Two month later, it further develops toward downstream accompanied by a deepened trough, making the East Asia experience a colder late winter (JFM(1)), especially in the northeastern China. Meanwhile, enhanced North Pacific anticyclonic perturbation excites an eastward wave train and contributes to positive geopotential height anomaly around the Greenland. Combined with a cyclonic anomaly to its southeast, a dipole structure forms and favors negative surface temperature anomaly covering the western Europe. In addition, a weakened polar vortex in the lower stratosphere can be observed during the boreal winter. Similar atmospheric responses to EsCB sea ice loss are well reproduced in the simulation experiments, not only supporting the conclusions from observational analyses, but also illustrating the possible physical mechanism to some extent.</p>


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Sign in / Sign up

Export Citation Format

Share Document