scholarly journals A statistical study of the response of the dayside equatorialF2layer to the main phase of intense geomagnetic storms as an indicator of penetration electric field

Author(s):  
N. Balan ◽  
M. Yamamoto ◽  
V. Sreeja ◽  
I. S. Batista ◽  
K. J. W. Lynn ◽  
...  
2010 ◽  
Vol 28 (12) ◽  
pp. 2177-2186 ◽  
Author(s):  
Yu. I. Yermolaev ◽  
N. S. Nikolaeva ◽  
I. G. Lodkina ◽  
M. Yu. Yermolaev

Abstract. A comparison of specific interplanetary conditions for 798 magnetic storms with Dst <−50 nT during 1976–2000 was made on the basis of the OMNI archive data. We categorized various large-scale types of solar wind as interplanetary drivers of storms: corotating interaction region (CIR), Sheath, interplanetary CME (ICME) including both magnetic cloud (MC) and Ejecta, separately MC and Ejecta, and "Indeterminate" type. The data processing was carried out by the method of double superposed epoch analysis which uses two reference times (onset of storm and minimum of Dst index) and makes a re-scaling of the main phase of the storm in a such way that all storms have equal durations of the main phase in the new time reference frame. This method reproduced some well-known results and allowed us to obtain some new results. Specifically, obtained results demonstrate that (1) in accordance with "output/input" criteria the highest efficiency in generation of magnetic storms is observed for Sheath and the lowest one for MC, and (2) there are significant differences in the properties of MC and Ejecta and in their efficiencies.


2018 ◽  
Vol 14 (2) ◽  
pp. 97
Author(s):  
Anwar Santoso ◽  
Dadang Nurmali ◽  
Mira Juangsih ◽  
Iyus Edi Rusnadi ◽  
Sri Ekawati ◽  
...  

The influence of geomagnetic storms on the ionosphere in the equatorial and low latitudes can be either rising or falling value of the value foF2 with the different response delay time. The difference in response is one of them allegedly influenced by the modification of Equatorial Electrojet (EEJ) generated by the penetration of high latitude electric field towards the low latitude electric field and the equator. Therefore, this paper analyzes the influence of the high latitude penetration of electric current to the low latitude electric current towards the ionosphere response to Indonesia's current geomagnetic storms using the data foF2 BPAA Sumedang (SMD; 6,910 S; 106,830E geographic coordinates or 16,550 S; 179,950 E magnetic coordinates) and data from the Biak geomagnetic field station (BIK; 1,080 S; 136,050 E geographic coordinates or  9,730 S; 207,390 E magnetic coordinates) in 2000-2001. The result showed that the injection of the electric field of the high latitudes to lower latitudes causing foF2 BPAA Sumedang to be disturbed. Onset of the foF2 disturbance in BPAA Sumedang started coincide with EEJ(HBIK-HDRW) and reached its minimum point with a time delay between 0 to 4 hours before and after Dst index reached the minimum point. For a delay time of 0 to 4 hours after the Dst index reached the minimum point, the results were in accordance with the research results from the prior research. However, for the time difference of between 0 to 4 hours before the Dst index reached the minimum point, the results differ from their results. AbstrakPengaruh badai geomagnet terhadap ionosfer di ekuator dan lintang rendah berupa naiknya nilai foF2 atau turunnya nilai foF2 dengan waktu tunda respon berbeda-beda. Perbedaan respon tersebut salah satunya diduga dipengaruhi oleh modifikasi Equatorial electrojet (EEJ) yang dihasilkan oleh penetrasi medan listrik lintang tinggi sampai daerah lintang rendah dan ekuator. Oleh karena itu, dalam makalah ini dilakukan analisis pengaruh penetrasi arus listrik lintang tinggi ke lintang rendah terhadap ionosfer saat badai geomagnet menggunakan data foF2 dari Balai Pengamatan Antariksa dan Atmosfer (BPAA) Sumedang (SMD; 6,910 LS; 106,830 BT koordinat geografis atau 16,550 LS; 179,950 BT koordinat magnet) dan data medan geomagnet dari stasiun Biak (BIK; 1,080 LS; 136,050 BT koordinat geografis atau 9,730 LS; 207,390 BT koordinat magnet) tahun 2000-2001. Hasilnya diperoleh bahwa penetrasi medan listrik dari lintang tinggi ke lintang lebih rendah Indonesia menyebabkan foF2 BPAA Sumedang terganggu. Onset gangguan foF2 BPAA Sumedang mulai terjadi bertepatan dengan EEJ(HBIK-HDRW) mencapai titik minimumnya dengan jeda waktu antara 0 sampai 4 jam sebelum dan sesudah indeks Dst mencapai minimum. Untuk beda waktu 0 sampai 4 jam sesudah indeks Dst mencapai minimum, hasilnya bersesuaian dengan hasil penelitian peneliti sebelumnya. Namun, untuk beda waktu 0 sampai 4 jam sebelum indeks Dst mencapai minimum, hasilnya merupakan temuan berbeda dari hasil mereka.


2005 ◽  
Vol 23 (7) ◽  
pp. 2579-2588 ◽  
Author(s):  
T. Johansson ◽  
T. Karlsson ◽  
G. Marklund ◽  
S. Figueiredo ◽  
P.-A. Lindqvist ◽  
...  

Abstract. Intense high-latitude electric fields (>150 mV/m mapped to ionospheric altitude) at 4–7 RE geocentric distance have been investigated in a statistical study, using data from the Cluster satellites. The orbit of the Cluster satellites limits the data collection at these altitudes to high latitudes, including the poleward part of the auroral oval. The occurrence and distribution of the selected events have been used to characterize the intense electric fields and to investigate their dependance on parameters such as MLT, CGLat, altitude, and also Kp. Peaks in the local time distribution are found in the evening to morning sectors but also in the noon sector, corresponding to cusp events. The electric field intensities decrease with increasing latitude in the region investigated (above 60 CGLat). A dependence on geomagnetic activity is indicated since the probability of finding an event increases up to Kp=5–6. The scales sizes are in the range up to 10 km (mapped to ionospheric altitude) with a maximum around 4–5km, consistent with earlier findings at lower altitudes and Cluster event studies. The magnitudes of the electric fields are inversely proportional to the scale sizes. The type of electric field structure (convergent or divergent) is consistent with the FAC direction for a subset of events with electric field intensities in the range 500–1000 mV/m and with clear bipolar signatures. The FAC directions are also consistent with the Region 1 and NBZ current systems, the latter of which prevail only during northward IMF conditions. For scale sizes less than 2 km the majority of the events were divergent electric field structures. Both converging and diverging electric fields were found throughout the investigated altitude range (4–7 RE geocentric distance). Keywords. Magnetospheric physics (Electric fields; Auroral phenomena; Magnetosphere-ionosphere interactions)


2015 ◽  
Vol 120 (9) ◽  
pp. 7307-7317 ◽  
Author(s):  
Sandeep Kumar ◽  
B. Veenadhari ◽  
S. Tulasi Ram ◽  
R. Selvakumaran ◽  
Shyamoli Mukherjee ◽  
...  

2013 ◽  
Vol 8 (S300) ◽  
pp. 493-494 ◽  
Author(s):  
Rahul Sharma ◽  
Nandita Srivastava ◽  
D. Chakrabarty

AbstractWe studied three interplanetary coronal mass ejections associated with solar eruptive filaments. Filament plasma remnants embedded in these structures were identified using plasma, magnetic and compositional signatures. These features when impacted the Earth's terrestrial magnetosphere - ionosphere system, resulted in geomagnetic storms. During the main phase of associated storms, along with high density plasma structures, polarity reversals in the Y-component (dawn-to-dusk) of the interplanetary electric field seem to trigger major auroral substorms with concomitant changes in the polar ionospheric electric field. Here, we examine the cases where plasma dynamics and magnetic structuring in the presence of the prompt penetration of the electric field into the equatorial ionosphere affected the space weather while highlighting the complex geomagnetic storm-substorm relationship.


2012 ◽  
Vol 433-440 ◽  
pp. 268-271
Author(s):  
Balveer S. Rathore ◽  
Subhash C. Kaushik ◽  
K.K. Parashar ◽  
Rammohan S. Bhadoria ◽  
Dinesh C. Gupta

A geomagnetic storm is a global disturbance in Earth’s magnetic field usually occurred due to abnormal conditions in the interplanetary magnetic field (IMF) and solar wind plasma emissions caused by various solar phenomenon. A study of 220 geomagnetic storms associated with disturbance storm time (Dst) decreases of more than -50 nT to -300 nT, observed during 1996-2007, the span of solar cycle 23. We have analyzed and studied them statistically. We find yearly occurrences of geomagnetic storm are strongly correlated with 11-year sunspot cycle, but no significant correlation between the maximum and minimum phase of solar cycle-23 have been found. It is also found that solar cycle-23 is remarkable for occurrence of Intense geomagnetic storm during its declining phase. The detailed results are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document