scholarly journals Studies of the E-Region Neutral Wind in the Auroral Ionosphere Using Two Long-Run Data.

1997 ◽  
Vol 49 (5) ◽  
pp. 641-673 ◽  
Author(s):  
S. Nozawa ◽  
A. Brekke ◽  
R. Fujii
1994 ◽  
Vol 99 (A5) ◽  
pp. 8801 ◽  
Author(s):  
Asgeir Brekke ◽  
Satonori Nozawa ◽  
Trygve Sparr

2004 ◽  
Vol 22 (8) ◽  
pp. 2943-2949 ◽  
Author(s):  
D. Pokhotelov ◽  
W. Lotko ◽  
A. V. Streltsov

Abstract. Numerical two-dimensional two-fluid MHD simulations of dynamic magnetosphere-ionosphere (MI) coupling have been performed to model the effects imposed on the auroral ionosphere by a powerful HF radio wave transmitter. The simulations demonstrate that modifications of the ionospheric plasma temperature and recombination due to artificial heating may trigger the ionospheric feedback instability when the coupled MI system is close to the state of marginal stability. The linear dispersion analysis of MI coupling has been performed to find the favorable conditions for marginal stability of the system. The development of the ionospheric feedback instability leads to the generation of shear waves which resonate in the magnetosphere between the heated ionospheric E-region and the strong gradient in the speed at altitudes of 1-2 RE. The application of the numerical results for the explanation of observations performed by low-orbiting satellites above the high-latitude ionosphere heated with a high power ground-based HF transmitter is discussed.


2021 ◽  
Vol 7 (1) ◽  
pp. 41-46
Author(s):  
Vera Nikolaeva ◽  
Evgeniy Gordeev ◽  
Denis Rogov ◽  
Aleksandr Nikolaev

The E-Region Auroral Ionosphere Model (AIM-E) was developed to determine the chemical composition and electron density in the auroral zone at E-layer heights (90–150 km). Solar and magnetic activity input parameters for AIM-E are the three-hour Ap index and the daily solar radio flux at a wavelength of 10.7 cm (index F10.7). In this paper, we compare AIM-E calculations of the electron density for the daytime with EUV radiation spectrum specified in two different ways: 1) the EUV spectrum theoretically calculated using the F10.7 index as an input parameter; 2) using TIMED satellite direct measurements of the EUV spectrum. We have corrected the EUVAC EUV radiation model to specify a photoionization source in AIM-E. Calculations of regular E-region critical frequencies show good agreement with the vertical sounding data from Russian high-latitude stations. Results we obtained make it possible to do a quick on-line assessment of the regular E layer, using the daily index F10.7 as an input parameter.


2021 ◽  
Author(s):  
Christoph Jacobi ◽  
Kanykei Kandieva ◽  
Christina Arras

<p>In the lower ionospheric E region, shallow regions of high electron density are found, which are called sporadic E (ES) layers. ES layers consist of thin clouds of accumulated ions. They occur mainly at middle latitudes, and they are most frequently found during the summer season. ES are generally formed at heights between 90 and 120 km. At midlatitudes, their occurrence can be described through the wind shear theory. According to this theory, ES formation is due to interaction between the metallic ion concentration, the Earth’s magnetic field, and the vertical shear of the neutral wind. Here, we analyze ES occurrence rates (OR) obtained from ionospheric radio occultation measurements by the FORMOSAT-3/COSMIC constellation. To derive information on ES from RO, we use the Signal-to-Noise ratio (SNR) profiles of the GPS L1 phase measurements. If large SNR standard deviation values occur that are concentrated within a layer of less than 10 km thickness, we assume that the respective SNR profile disturbance is owing to an ES layer.</p><p>Midlatitude ES are found to be mainly connected with a migrating diurnal and semidiurnal component. Especially at high latitudes of the southern hemisphere, nonmigrating components such as a diurnal westward wave 2 and a semidiurnal westward wave 1 are also visible. Near the equator, a strong diurnal eastward wavenumber 3 component and a semidiurnal eastward wavenumber 2 component are found in summer and autumn. Terdiurnal and quarterdiurnal components are weaker than the diurnal and semidiurnal ones. We discuss seasonal and global distributions of migrating and nonmigrating components, and their relation to neutral wind shear derived from ground-based observations and numerical modeling.</p>


2000 ◽  
Vol 18 (9) ◽  
pp. 1182-1196 ◽  
Author(s):  
M. Voiculescu ◽  
C. Haldoupis ◽  
D. Pancheva ◽  
M. Ignat ◽  
K. Schlegel ◽  
...  

Abstract. Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.Key words: Ionosphere (ionosphere irregularities; mid-latitude ionosphere) – Meteorology and atmospheric dynamics (waves and tides)


2002 ◽  
Vol 20 (12) ◽  
pp. 1899-1904 ◽  
Author(s):  
P. T. Jayachandran ◽  
E. F. Donovan ◽  
J. W. MacDougall ◽  
D. R. Moorcroft ◽  
J.-P. St. Maurice ◽  
...  

Abstract. We compare the locations of the equatorward boundaries of SuperDARN E-region backscatter and Hb  emissions, focusing on the dusk-midnight sector of the auroral oval where the proton aurora is statistically located equatorward of the discrete electron aurora. We show that, whenever both boundaries can be simultaneously identified, they are coincident. Our result complements earlier studies, which demonstrated the correspondence between the DMSP b2i boundary and both the equatorward boundary of the proton auroral oval (Donovan et al., 2002), and the equatorward boundary of SuperDARN E-region echoes (Jayachandran et al., 2002). Further, our result shows that, provided there is sufficient precipitating proton energy flux, the SuperDARN radars can be used to monitor the equatorward edge of the proton auroral oval.Key words. Ionosphere (auroral ionosphere; particle precipitation; ionospheric irregularities)


Sign in / Sign up

Export Citation Format

Share Document