scholarly journals Observations of mesoscale eddies in the South Atlantic Cape Basin: Baroclinic and deep barotropic eddy variability

2010 ◽  
Vol 115 (C12) ◽  
Author(s):  
S. Baker-Yeboah ◽  
D. A. Byrne ◽  
D. R. Watts
2019 ◽  
Vol 144 ◽  
pp. 154-165 ◽  
Author(s):  
Andréa da Consolação de Oliveira Carvalho ◽  
Carlos Rafael B. Mendes ◽  
Rodrigo Kerr ◽  
José Luiz Lima de Azevedo ◽  
Felippe Galdino ◽  
...  

2015 ◽  
Vol 42 (6) ◽  
pp. 1856-1862 ◽  
Author(s):  
A. B. Villas Bôas ◽  
O. T. Sato ◽  
A. Chaigneau ◽  
G. P. Castelão

Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1067-1080
Author(s):  
Christina Schmidt ◽  
Franziska U. Schwarzkopf ◽  
Siren Rühs ◽  
Arne Biastoch

Abstract. The inflow of relatively warm and salty water from the Indian Ocean into the South Atlantic via Agulhas leakage is important for the global overturning circulation and the global climate. In this study, we analyse the robustness of Agulhas leakage estimates as well as the thermohaline property modifications of Agulhas leakage south of Africa. Lagrangian experiments with both the newly developed tool Parcels and the well established tool Ariane were performed to simulate Agulhas leakage in the eddy-rich ocean–sea-ice model INALT20 (1/20∘ horizontal resolution) forced by the JRA55-do atmospheric boundary conditions. The average transport, its variability, trend and the transit time from the Agulhas Current to the Cape Basin of Agulhas leakage is simulated comparably with both Lagrangian tools, emphasizing the robustness of our method. Different designs of the Lagrangian experiment alter in particular the total transport of Agulhas leakage by up to 2 Sv, but the variability and trend of the transport are similar across these estimates. During the transit from the Agulhas Current at 32∘ S to the Cape Basin, a cooling and freshening of Agulhas leakage waters occurs especially at the location of the Agulhas Retroflection, resulting in a density increase as the thermal effect dominates. Beyond the strong air–sea exchange around South Africa, Agulhas leakage warms and salinifies the water masses below the thermocline in the South Atlantic.


Zootaxa ◽  
2009 ◽  
Vol 1992 (1) ◽  
pp. 20-36 ◽  
Author(s):  
SIMON WEIGMANN ◽  
JÜRGEN GUERRERO-KOMMRITZ

As part of the sampling efforts during the DIVA-II expedition several Tanaidacea of the genus Neotanais were captured in the Guinea and the Cape Basin in the tropical and southern East Atlantic Ocean. Two different species were sampled, Neotanais rotermundiae sp. n. from the Guinea and Neotanais guskei sp. n. from the Cape Basin. The distribution of both species is limited to these basins. A full description for both species is presented. Neotanais guskei sp. n. is the largest Neotanais reported for the South Atlantic Ocean.


2011 ◽  
Vol 8 (2) ◽  
pp. 483-531 ◽  
Author(s):  
J. M. A. C. Souza ◽  
C. de Boyer Montégut ◽  
P. Y. Le Traon

Abstract. Three methods for automatic detection of mesoscale coherent structures are applied to Sea Level Anomaly (SLA) fields in the South Atlantic. The first method is based on the wavelet packet decomposition of the SLA data, the second on the estimation of the Okubo-Weiss parameter and the third on a geometric criterion using the winding-angle approach. The results provide a comprehensive picture of the mesoscale eddies over the South Atlantic Ocean, emphasizing their main characteristics: amplitude, diameter, duration and propagation velocity. Five areas of particular eddy dynamics were selected: the Brazil Current, the Agulhas eddies propagation corridor, the Agulhas Current retroflexion, the Brazil-Malvinas confluence zone and the northern branch of the Antarctic Circumpolar Current (ACC). For these areas, mean propagation velocities and amplitudes were calculated. Two regions with long duration eddies were observed, corresponding to the propagation of Agulhas and ACC eddies. Through the comparison between the identification methods, their main advantages and shortcomings were detailed. The geometric criterion presents a better performance, mainly in terms of number of detections, duration of the eddies and propagation velocities. The results are particularly good for the Agulhas Rings, that presented the longest lifetimes of all South Atlantic eddies.


2020 ◽  
Author(s):  
Yu-Te Hsieh ◽  
Walter Geibert ◽  
E. Malcolm S. Woodward ◽  
Neil J. Wyatt ◽  
Maeve C. Lohan ◽  
...  

Abstract. Trace elements play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40° S is a prominent region of high productivity and a transition zone between the nitrate-depleted Subtropical Gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40° S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixing from the continental shelf to the open ocean shows an eddy diffusion of Kx = 1.7 ± 1.4 (106 cm2 s−1) and an integrated advection velocity w = 0.6 ± 0.3 cm s−1. In the Cape Basin, horizontal mixing is Kx = 2.7 ± 0.8 (107 cm2 s−1) and vertical mixing Kz = 1.0–1.5 cm2 s−1 in the upper 600 m layer. Three different approaches (228Ra-diffusion, 228Ra-advection and 228Ra/TE-ratio) have been applied to estimate the dissolved trace-element fluxes from shelf to open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine margin to be: 3.8–22 (× 103) nmol Co m−2 d−1, 7.9–20 (× 104) nmol Fe m−2 d−1 and 2.7–6.5 (× 104) nmol Zn m−2 d−1. Off-shelf fluxes from the Cape margin are: 4.3–6.2 (× 103) nmol Co m−2 d−1, 1.2–3.1 (× 104) nmol Fe m−2 d−1 and 0.9–1.2 (× 104) nmol Zn m−2 d−1. On average, at 40° S in the Atlantic, vertical mixing supplies 0.4–1.2 nmol Co m−2 d−1, 3.6–11 nmol Fe m−2 d−1, and 13–16 nmol Zn m−2 d−1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40° S Atlantic. It is insufficient, however, to provide the trace elements removed by biological uptake. Other inputs (e.g. particulate, or from winter deep-mixing) are required to balance the trace element budgets in this region.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 923-945 ◽  
Author(s):  
Marion Kersalé ◽  
Tarron Lamont ◽  
Sabrina Speich ◽  
Thierry Terre ◽  
Remi Laxenaire ◽  
...  

Abstract. The eastern side of the South Atlantic Meridional overturning circulation Basin-wide Array (SAMBA) along 34.5° S is used to assess the nonlinear, mesoscale dynamics of the Cape Basin. This array presently consists of current meter moorings and bottom mounted Current and Pressure recording Inverted Echo Sounders (CPIES) deployed across the continental slope. These data, available from September 2014 to December 2015, combined with satellite altimetry allow us to investigate the characteristics and the impact of mesoscale dynamics on local water mass distribution and cross-validate the different data sets. We demonstrate that the moorings are affected by the complex dynamics of the Cape Basin involving Agulhas rings, cyclonic eddies and anticyclonic eddies from the Agulhas Bank and the South Benguela upwelling front and filaments. Our analyses show that exchange of water masses happens through the advection of water by mesoscale eddies but also via wide water mass intrusions engendered by the existence of intense dipoles. These complex dynamics induce strong intra-seasonal upper-ocean velocity variations and water mass exchanges between the shelf and the open ocean but also across the subantarctic and subtropical waters. This work presents the first independent observations comparison between full-depth moorings and CPIES data sets within the eastern South Atlantic region that gives some evidence of eastern boundary buoyancy anomalies associated with migrating eddies. It also highlights the need to continuously sample the full water depth as inter-basin exchanges occur intermittently and affect the whole water column.


Ocean Science ◽  
2011 ◽  
Vol 7 (3) ◽  
pp. 317-334 ◽  
Author(s):  
J. M. A. C. Souza ◽  
C. de Boyer Montégut ◽  
P. Y. Le Traon

Abstract. Three methods for automatic detection of mesoscale coherent structures are applied to Sea Level Anomaly (SLA) fields in the South Atlantic. The first method is based on the wavelet packet decomposition of the SLA data, the second on the estimation of the Okubo-Weiss parameter and the third on a geometric criterion using the winding-angle approach. The results provide a comprehensive picture of the mesoscale eddies over the South Atlantic Ocean, emphasizing their main characteristics: amplitude, diameter, duration and propagation velocity. Five areas of particular eddy dynamics were selected: the Brazil Current, the Agulhas eddies propagation corridor, the Agulhas Current retroflexion, the Brazil-Malvinas confluence zone and the northern branch of the Antarctic Circumpolar Current (ACC). For these areas, mean propagation velocities and amplitudes were calculated. Two regions with long duration eddies were observed, corresponding to the propagation of Agulhas and ACC eddies. Through the comparison between the identification methods, their main advantages and shortcomings were detailed. The geometric criterion presents the best performance, mainly in terms of number of detections, duration of the eddies and propagation velocities. The results are particularly good for the Agulhas Rings, which have the longest lifetimes of all South Atlantic eddies.


2013 ◽  
Vol 118 (10) ◽  
pp. 5720-5731 ◽  
Author(s):  
Renato M. Castelao ◽  
Ruoying He

Sign in / Sign up

Export Citation Format

Share Document