scholarly journals The relative contribution of fast and slow sinking particles to ocean carbon export

2012 ◽  
Vol 26 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. S. Riley ◽  
R. Sanders ◽  
C. Marsay ◽  
F. A. C. Le Moigne ◽  
E. P. Achterberg ◽  
...  
2021 ◽  
Author(s):  
Colleen A. Durkin ◽  
Ken O. Buesseler ◽  
Ivona Cetinić ◽  
Margaret L. Estapa ◽  
Roger P. Kelly ◽  
...  

AbstractTo better quantify the ocean’s biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean’s interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from 4 distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over 1 month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.


2018 ◽  
Vol 115 (29) ◽  
pp. E6799-E6807 ◽  
Author(s):  
Mireia Mestre ◽  
Clara Ruiz-González ◽  
Ramiro Logares ◽  
Carlos M. Duarte ◽  
Josep M. Gasol ◽  
...  

The sinking of organic particles formed in the photic layer is a main vector of carbon export into the deep ocean. Although sinking particles are heavily colonized by microbes, so far it has not been explored whether this process plays a role in transferring prokaryotic diversity from surface to deep oceanic layers. Using Illumina sequencing of the 16S rRNA gene, we explore here the vertical connectivity of the ocean microbiome by characterizing marine prokaryotic communities associated with five different size fractions and examining their compositional variability from surface down to 4,000 m across eight stations sampled in the Atlantic, Pacific, and Indian Oceans during the Malaspina 2010 Expedition. Our results show that the most abundant prokaryotes in the deep ocean are also present in surface waters. This vertical community connectivity seems to occur predominantly through the largest particles because communities in the largest size fractions showed the highest taxonomic similarity throughout the water column, whereas free-living communities were more isolated vertically. Our results further suggest that particle colonization processes occurring in surface waters determine to some extent the composition and biogeography of bathypelagic communities. Overall, we postulate that sinking particles function as vectors that inoculate viable particle-attached surface microbes into the deep-sea realm, determining to a considerable extent the structure, functioning, and biogeography of deep ocean communities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gaojing Fan ◽  
Zhengbing Han ◽  
Wentao Ma ◽  
Shuangling Chen ◽  
Fei Chai ◽  
...  

2015 ◽  
Vol 175 ◽  
pp. 72-81 ◽  
Author(s):  
Colleen A. Durkin ◽  
Margaret L. Estapa ◽  
Ken O. Buesseler

1995 ◽  
Vol 348 (1324) ◽  
pp. 211-219 ◽  

A model simulation of the global carbon cycle demonstrates that the biological and solubility pumps are of comparable importance in determining the spatial distribution of annual mean air-sea fluxes in the Atlantic. The model also confirms that the impact of the (steady state) biological pump on the magnitude and spatial distribution of anthropogenic CO 2 uptake is minimal. An Atlantic Ocean carbon budget developed from analysis of the model combined with observations suggests that the air-sea flux of carbon is inadequate to supply the postulated large dissolved inorganic carbon export from the Atlantic. Other sources of carbon are required, such as an input from the Pacific via the Bering Strait and Arctic, river inflow, or an import of dissolved organic carbon.


Sign in / Sign up

Export Citation Format

Share Document