scholarly journals El Niño–Southern Oscillation–related principal interannual variability modes of early and late summer rainfall over East Asia in sea surface temperature-driven atmospheric general circulation model simulations

2011 ◽  
Vol 116 (D14) ◽  
Author(s):  
Bo Li ◽  
Tianjun Zhou
2008 ◽  
Vol 363 (1498) ◽  
pp. 1761-1766 ◽  
Author(s):  
Peter Good ◽  
Jason A Lowe ◽  
Mat Collins ◽  
Wilfran Moufouma-Okia

Future changes in meridional sea surface temperature (SST) gradients in the tropical Atlantic could influence Amazon dry-season precipitation by shifting the patterns of moisture convergence and vertical motion. Unlike for the El Niño-Southern Oscillation, there are no standard indices for quantifying this gradient. Here we describe a method for identifying the SST gradient that is most closely associated with June–August precipitation over the south Amazon. We use an ensemble of atmospheric general circulation model (AGCM) integrations forced by observed SST from 1949 to 2005. A large number of tropical Atlantic SST gradient indices are generated randomly and temporal correlations are examined between these indices and June–August precipitation averaged over the Amazon Basin south of the equator. The indices correlating most strongly with June–August southern Amazon precipitation form a cluster of near-meridional orientation centred near the equator. The location of the southern component of the gradient is particularly well defined in a region off the Brazilian tropical coast, consistent with known physical mechanisms. The chosen index appears to capture much of the Atlantic SST influence on simulated southern Amazon dry-season precipitation, and is significantly correlated with observed southern Amazon precipitation. We examine the index in 36 different coupled atmosphere–ocean model projections of climate change under a simple compound 1% increase in CO 2 . Within the large spread of responses, we find a relationship between the projected trend in the index and the Amazon dry-season precipitation trends. Furthermore, the magnitude of the trend relationship is consistent with the inter-annual variability relationship found in the AGCM simulations. This suggests that the index would be of use in quantifying uncertainties in climate change in the region.


1999 ◽  
Vol 29 ◽  
pp. 45-48 ◽  
Author(s):  
Gilles Delaygue ◽  
Valérie Masson ◽  
Jean Jouzel

AbstractThe geographic origin of Antarctic precipitation is important for ice-core isotopic interpretation as well as ice-sheet mass-balance calculations. Here we estimate these moisture origins with the NASA/Goddard Institute of Space Studies atmospheric general circulation model, under different climatic conditions. This model reasonably simulates the broad features of the present-day observed hydrological cycle, and indicates a subtropical to subglacial (30-60° S) latitudinal origin for the Antarctic precipitation. We use different climatic reconstructions, all based on CLIMAP, for the Last Glacial Maximum (about 21000 years ago), which differ by the latitudinal sea-surface temperature gradient and seasonality. CLIMAP conditions increase the latitudinal gradient and the sea-ice extent, with the consequence of slightly enhancing the low-latitude origins. Shifting the seasonal cycle of oceanic prescribed conditions has an important effect on the hydrological cycle but less on the precipitation origin. Prescribing cooler tropical sea-surface temperatures, which decreases the latitudinal gradient, makes the latitudinal contributions closer to modern ones and increases the dominant oceanic sources. Globally the origins of Antarctic precipitation do not change significantly, either annually or seasonally.


Sign in / Sign up

Export Citation Format

Share Document