scholarly journals Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Antón ◽  
M. Kroon ◽  
M. López ◽  
J. M. Vilaplana ◽  
M. Bañón ◽  
...  
2021 ◽  
Vol 14 (7) ◽  
pp. 4915-4928
Author(s):  
Ralf Zuber ◽  
Ulf Köhler ◽  
Luca Egli ◽  
Mario Ribnitzky ◽  
Wolfgang Steinbrecht ◽  
...  

Abstract. During the 2019/2020 measurement campaign at Hohenpeißenberg (Germany) and Davos (Switzerland) we compared the well-established Dobson and Brewer spectrometers (single- and double-monochromator Brewer) with newer BTS array-spectroradiometer-based systems in terms of total ozone column (TOC) determination. The aim of this study is to validate the BTS performance in a longer-term TOC analysis over more than 1 year with seasonal and weather influences. Two different BTS setups have been used – a fibre-coupled entrance optic version by PMOD/WRC called Koherent and a diffusor optic version from Gigahertz Optik GmbH called BTS-Solar, which proved to be simpler in terms of calibration. The array-spectrometer-based BTS systems have been calibrated with traceability to NMI, and both versions of TOC retrieval algorithms are based on spectral measurements in the range of 305 to 350 nm instead of single-wavelength or wavelength pair measurements as per Brewer or Dobson. The two BTS-based systems, however, used fundamentally different retrieval algorithms for the TOC assessment, whereby the retrieval of the BTS-Solar turned out to achieve significantly smaller seasonal drifts. The intercomparison showed a difference of the BTS-Solar to Brewers of < 0.1 % with an expanded standard deviation (k=2) of < 1.5 % over the whole measurement campaign. Koherent showed a difference of 1.7 % with an expanded standard deviation (k=2) of 2.7 % mostly caused by a significant seasonal variation. To summarize, the BTS-Solar performed at the level of Brewers in the comparison in Hohenpeißenberg. The BTS-Solar showed very small dependence on the slant path column compared to the double-monochromator Brewer and performed better than the single-monochromator Brewer. Koherent showed a strong seasonal variation in Davos due to the sensitivity of its ozone retrieval algorithm to stratospheric temperature.


2010 ◽  
Vol 115 (D5) ◽  
Author(s):  
M. Antón ◽  
D. Bortoli ◽  
J. M. Vilaplana ◽  
A. M. Silva ◽  
A. Serrano ◽  
...  

2011 ◽  
Vol 45 (35) ◽  
pp. 6283-6290 ◽  
Author(s):  
M. Antón ◽  
D. Bortoli ◽  
P.S. Kulkarni ◽  
M.J. Costa ◽  
A.F. Domingues ◽  
...  

2009 ◽  
Vol 114 (D14) ◽  
Author(s):  
M. Antón ◽  
M. López ◽  
J. M. Vilaplana ◽  
M. Kroon ◽  
R. McPeters ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


1998 ◽  
Vol 22 (11) ◽  
pp. 1501-1504
Author(s):  
A.J.M Piters ◽  
P.F Levelt ◽  
M.A.F Allaart ◽  
H.M Kelder

2020 ◽  
Author(s):  
Javer A. Barrera ◽  
Rafael P. Fernandez ◽  
Fernando Iglesias-Suarez ◽  
Carlos A. Cuevas ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (


2016 ◽  
Vol 5 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Tomi Karppinen ◽  
Kaisa Lakkala ◽  
Juha M. Karhu ◽  
Pauli Heikkinen ◽  
Rigel Kivi ◽  
...  

Abstract. Brewer total ozone column measurements started in Sodankylä in May 1988, 9 months after the signing of The Montreal Protocol. The Brewer instrument has been well maintained and frequently calibrated since then to produce a high-quality ozone time series now spanning more than 25 years. The data have now been uniformly reprocessed between 1988 and 2014. The quality of the data has been assured by automatic data rejection rules as well as by manual checking. Daily mean values calculated from the highest-quality direct sun measurements are available 77 % of time with up to 75 measurements per day on clear days. Zenith sky measurements fill another 14 % of the time series and winter months are sparsely covered by moon measurements. The time series provides information to survey the evolution of Arctic ozone layer and can be used as a reference point for assessing other total ozone column measurement practices.


Sign in / Sign up

Export Citation Format

Share Document