scholarly journals Oklahoma's Dormant Faults Hide Huge Seismic Risk Potential

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Lily Strelich

Researchers look at induced seismicity data in Oklahoma to spot an increase of stress in faults that could cause even more damage than recent quakes.

2020 ◽  
Vol 24 (2) ◽  
pp. 263-292 ◽  
Author(s):  
Cecilia I. Nievas ◽  
Julian J. Bommer ◽  
Helen Crowley ◽  
Jan van Elk ◽  
Michail Ntinalexis ◽  
...  

AbstractInterest in small-to-medium magnitude earthquakes and their potential consequences has increased significantly in recent years, mostly due to the occurrence of some unusually damaging small events, the development of seismic risk assessment methodologies for existing building stock, and the recognition of the potential risk of induced seismicity. As part of a clear ongoing effort of the earthquake engineering community to develop knowledge on the risk posed by smaller events, a global database of earthquakes with moment magnitudes in the range from 4.0 to 5.5 for which damage and/or casualties have been reported has been compiled and is made publicly available. The two main purposes were to facilitate studies on the potential for earthquakes in this magnitude range to cause material damage and to carry out a statistical study to characterise the frequency with which earthquakes of this size cause damage and/or casualties (published separately). The present paper describes the data sources and process followed for the compilation of the database, while providing critical discussions on the challenges encountered and decisions made, which are of relevance for its interpretation and use. The geographic, temporal, and magnitude distributions of the 1958 earthquakes that make up the database are presented alongside the general statistics on damage and casualties, noting that these stem from a variety of sources of differing reliability. Despite its inherent limitations, we believe it is an important contribution to the understanding of the extent of the consequences that may arise from earthquakes in the magnitude range of study.


2018 ◽  
Vol 213 (3) ◽  
pp. 1693-1700 ◽  
Author(s):  
S J Bourne ◽  
S J Oates ◽  
J van Elk

SUMMARY Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space–time–magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.


2017 ◽  
Vol 96 (5) ◽  
pp. s279-s284 ◽  
Author(s):  
Jan-Dirk Jansen ◽  
Rien Herber

AbstractFurther research into seismicity caused by natural gas production from the Groningen field is necessary to improve the assessment of seismic risk and develop means to control and reduce it. Research into subsurface aspects is primarily of relevance to assess the seismic hazard component in the cause-and-effect chain that governs the seismic risk. It requires a wide range of research activities that can be broadly classified as follows: •Increasing understanding of the physical mechanisms that govern production-induced seismicity, in particular source mechanisms, compaction behaviour, propagation of energy to the surface, and the effects of fluctuating production.•Reducing uncertainty by acquiring additional field data to improve statistical inference, and developing statistical methods and procedures that can cope with the non-stationary nature of the process.•Developing tools and techniques to improve risk management, and support operational control and policy measures under uncertainty.An essential requirement for further research will be the possibility of developing competing theories for many aspects of the modelling chain. This requires an overall hazard and risk assessment methodology that can accommodate multiple models, and an organisational structure that facilitates the comparison of competing approaches while safeguarding their independent development. This will have to be supported by the availability of reliable data via shared databases. Finally, the scientific community should be prepared to make a major effort to translate their research results into popular scientific versions in order to keep stakeholders abreast of progressive insight into the origin, predictability and prevention of induced seismicity.


Author(s):  
J. A. de Waal ◽  
A. G. Muntendam-Bos ◽  
J. P. A. Roest

Abstract. Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl) went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995) and 42 cm (2005) to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas production by as much and as fast as realistically possible. Before taking such a decision, the Minister of Economic Affairs requested further studies. The results became available early 2014 and led to the government decision to lower gas production in the earthquake prone central area of the field by 80 % for the next three~years. In addition further investigations and a program to strengthen houses and infrastructure were started. Important lessons have been learned from the studies carried out to date. It is now realised that uncertainties in predicted subsidence and seismicity are much larger than previously recognised. Compaction, subsidence and seismicity are strongly interlinked and relate in a non-linear way to production and pressure drop. The latest studies by the operator suggest that seismic hazard in Groningen is largely determined by tremors with magnitudes between 4.5 and 5.0 even at an annual probability of occurrence of less than 1 %. And that subsidence in 2080 in the centre of the bowl could be anywhere between 50 and 70 cm. Initial evaluations by the regulator indicate similar numbers and suggest that the present seismic risk is comparable to Dutch flooding risks. Different models and parameters can be used to describe the subsidence and seismicity observed so far. The choice of compaction and seismicity models and their parameters has a large impact on the calculated future subsidence (rates), seismic activity and on the predicted response to changes in gas production. In addition there are considerable uncertainties in the ground motions resulting from an earthquake of a given magnitude and in the expected response of buildings and infrastructure. As a result uncertainties in subsidence and seismicity become very large for periods more than three to five years into the future. To counter this a control loop based on interactive modelling, measurements and repeated calibration will be used. Over the coming years, the effect of the production reduction in the centre of the field on subsidence and seismicity will be studied in detail in an effort to improve understanding and thereby reduce prediction uncertainties. First indications are that the reduction has led to a drop in subsidence rate and seismicity within a period of a few months. This suggests that the system can be controlled and regulated. If this is the case, the integrated loop of predicting, monitoring and updating in combination with mitigation measures can be applied to keep subsidence (rate) and induced seismicity within limits. To be able to do so, the operator has extended the field-monitoring network. It now includes PS-InSAR and GPS stations for semi-permanent subsidence monitoring in addition to a traditional network of levelling benchmarks. For the seismic monitoring 60 shallow (200 m) borehole seismometers, 60 + accelerometers and two permanent downhole seismic arrays at reservoir level will be added. Scenario's spanning the range of parameter and model uncertainties will be generated to calculate possible subsidence and seismicity outcomes. The probability of each scenario will be updated over time through confrontation with the measurements as they become available. At regular intervals the subsidence prediction and the seismic risk will be re-evaluated. Further mitigation measures, possibly including further production measures will need to be taken if probabilities indicate unacceptable risks.


2021 ◽  
Author(s):  
Ruth M.J. Amey ◽  
John R. Elliott ◽  
Ekbal Hussain ◽  
Richard Walker ◽  
Marco Pagani ◽  
...  

2009 ◽  
Author(s):  
Kelly D. Dages ◽  
John W. Jones ◽  
Bailey Klinger
Keyword(s):  

2019 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Sarmistha R. Majumdar

Fracking has helped to usher in an era of energy abundance in the United States. This advanced drilling procedure has helped the nation to attain the status of the largest producer of crude oil and natural gas in the world, but some of its negative externalities, such as human-induced seismicity, can no longer be ignored. The occurrence of earthquakes in communities located at proximity to disposal wells with no prior history of seismicity has shocked residents and have caused damages to properties. It has evoked individuals’ resentment against the practice of injection of fracking’s wastewater under pressure into underground disposal wells. Though the oil and gas companies have denied the existence of a link between such a practice and earthquakes and the local and state governments have delayed their responses to the unforeseen seismic events, the issue has gained in prominence among researchers, affected community residents, and the media. This case study has offered a glimpse into the varied responses of stakeholders to human-induced seismicity in a small city in the state of Texas. It is evident from this case study that although individuals’ complaints and protests from a small community may not be successful in bringing about statewide changes in regulatory policies on disposal of fracking’s wastewater, they can add to the public pressure on the state government to do something to address the problem in a state that supports fracking.


Sign in / Sign up

Export Citation Format

Share Document