scholarly journals Arctic Sea Ice Extent May Shrink Below 2012 Record Low

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Megan Gannon

Satellite data, field measurements, and readings from "snow buoys" reveal ice thickness patterns similar to those preceding the lowest recorded sea ice extent, which was reached nearly 4 years ago.

Current knowledge on Arctic sea ice extent and thickness variability is reviewed, and we examine whether measurements to date provide evidence for the impact of climate change. The total Arctic ice extent has shown a small but significant reduction of (2.1 ± 0.9)% during the period 1978-87, after apparently increasing from a lower level in the early 1970s. However, open water within the pack ice limit has also diminished, so that the reduction of sea ice area is only (1.8 ± 1.2)%. This stability conceals large interannual variations and trends in individual regions of the Arctic Ocean and sub-Arctic seas, which are out of phase with one another and so have little net impact on the overall hemispheric ice extent. The maximum annual global extent (occurring during the Antarctic winter) shows a more significant decrease of 5% during 1972-87. Ice thickness distribution has been measured by submarine sonar profiling, moored upward sonars, airborne laser prohlometry, airborne electromagnetic techniques and drilling. Promising new techniques include: sonar mounted on an AUV or neutrally buoyant float; acoustic tomography or thermometry; and inference from a combination of microwave sensors. In relation to climate change, the most useful measurement has been repeated submarine sonar profiling under identical parts of the Arctic, which offers some evidence of a decline in mean ice thickness in the 1980s compared to the 1970s. The link between mean ice thickness and climatic warming is complex because of the effects of dynamics and deformation. Only fast ice responds primarily to air temperature changes and one can predict thinning of fast ice and extension of the open water season in fast ice areas. Another region of increasingly mild ice conditions is the central Greenland Sea where winter thermohaline convection is triggered by cyclic growth and melt of local young ice. In recent years convection to the bottom has slowed or ceased, possibly related to moderation of ice conditions.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2012 ◽  
Vol 7 (3) ◽  
pp. 034011 ◽  
Author(s):  
J J Day ◽  
J C Hargreaves ◽  
J D Annan ◽  
A Abe-Ouchi

2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2019 ◽  
Vol 100 (1) ◽  
pp. S43-S48 ◽  
Author(s):  
Juan C. Acosta Navarro ◽  
Pablo Ortega ◽  
Javier García-Serrano ◽  
Virginie Guemas ◽  
Etienne Tourigny ◽  
...  

2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2011 ◽  
Vol 38 (9-10) ◽  
pp. 2099-2113 ◽  
Author(s):  
Matthew E. Higgins ◽  
John J. Cassano

Sign in / Sign up

Export Citation Format

Share Document