scholarly journals High‐Resolution Terrain Analysis for Lander Safety Landing and Rover Path Planning Based on Lunar Reconnaissance Orbiter Narrow Angle Camera Images: A Case Study of China's Chang'e‐4 Probe

2019 ◽  
Vol 6 (3) ◽  
pp. 398-410 ◽  
Author(s):  
Bo Li ◽  
Zongyu Yue ◽  
Jiang Zhang ◽  
Xiaohui Fu ◽  
Zongcheng Ling ◽  
...  
2020 ◽  
Author(s):  
Valentin Bickel ◽  
Jordan Aaron ◽  
Andrea Manconi ◽  
Simon Loew ◽  
Urs Mall

<p>Under certain conditions, meter to house-sized boulders fall, jump, and roll from topographic highs to topographic lows, a landslide type termed rockfall. On the Moon, these features have first been observed in Lunar Orbiter photographs taken during the pre-Apollo era. Understanding the drivers of lunar rockfall can provide unique information about the seismicity and erosional state of the lunar surface, however this requires high resolution mapping of the spatial distribution and size of these features. Currently, it is believed that lunar rockfalls are driven by moonquakes, impact-induced shaking, and thermal fatigue. Since the Lunar Orbiter and Apollo programs, NASA’s Lunar Reconnaissance Orbiter Narrow Angle Camera (NAC) returned more than 2 million high-resolution (NAC) images from the lunar surface. As the manual extraction of rockfall size and location from image data is time intensive, the vast majority of NAC images have not yet been analyzed, and the distribution and number of rockfalls on the Moon remains unknown. Demonstrating the potential of AI for planetary science applications, we deployed a Convolutional Neural Network in combination with Google Cloud’s advanced computing capabilities to scan through the entire NAC image archive. We identified 136,610 rockfalls between 85°N and 85°S and created the first global, consistent rockfall map of the Moon. This map enabled us to analyze the spatial distribution and density of rockfalls across lunar terranes and geomorphic regions, as well as across the near- and farside, and the northern and southern hemisphere. The derived global rockfall map might also allow for the identification and localization of recent seismic activity on or underneath the surface of the Moon and could inform landing site selection for future geophysical surface payloads of Artemis, CLPS, or other missions. The used CNN will soon be available as a tool on NASA JPL’s Moon Trek platform that is part of NASA’s Solar System Treks (trek.nasa.gov/moon/).</p>


2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


2021 ◽  
pp. 1-10
Author(s):  
Adam Weintrit ◽  
Jacek Pietraszkiewicz ◽  
Wiesław Piotrzkowski ◽  
Wojciech Tycholiz

Abstract In recent years the transition of marine navigation to the digital era has been gaining momentum. Implementation of e-Navigation solutions varies from country to country in terms of their priorities, goals, levels and effects. Maritime authorities in Poland have been setting the pace in this transition process, not only in Poland but also in general as a global solution. The most recent example is the planned deployment of a variety of e-Navigation tools in the Vistula Lagoon: from GNSS-RTK Ground-Based Augmentation System, to virtual and synthetic aids to navigation, high-resolution bathymetry and advanced navigational software for piloting. The major objectives of this paper are, first, to summarise recent dynamics in the e-Navigation field, and second, to present a practical implementation of the e-Navigation concept in the Vistula Lagoon area.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199958
Author(s):  
Larkin Folsom ◽  
Masahiro Ono ◽  
Kyohei Otsu ◽  
Hyoshin Park

Mission-critical exploration of uncertain environments requires reliable and robust mechanisms for achieving information gain. Typical measures of information gain such as Shannon entropy and KL divergence are unable to distinguish between different bimodal probability distributions or introduce bias toward one mode of a bimodal probability distribution. The use of a standard deviation (SD) metric reduces bias while retaining the ability to distinguish between higher and lower risk distributions. Areas of high SD can be safely explored through observation with an autonomous Mars Helicopter allowing safer and faster path plans for ground-based rovers. First, this study presents a single-agent information-theoretic utility-based path planning method for a highly correlated uncertain environment. Then, an information-theoretic two-stage multiagent rapidly exploring random tree framework is presented, which guides Mars helicopter through regions of high SD to reduce uncertainty for the rover. In a Monte Carlo simulation, we compare our information-theoretic framework with a rover-only approach and a naive approach, in which the helicopter scouts ahead of the rover along its planned path. Finally, the model is demonstrated in a case study on the Jezero region of Mars. Results show that the information-theoretic helicopter improves the travel time for the rover on average when compared with the rover alone or with the helicopter scouting ahead along the rover’s initially planned route.


Sign in / Sign up

Export Citation Format

Share Document