scholarly journals Space Weathering Asymmetrically Alters Lunar Crater Walls

Eos ◽  
2018 ◽  
Vol 99 ◽  
Author(s):  
Sarah Stanley

Directional differences in craters’ optical properties suggest that the solar wind, not tiny meteorites, is the main driver of space weathering on the Moon.

2021 ◽  
Author(s):  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Dana Hurley ◽  
Alexis Bouquet ◽  
Kurt Retherford ◽  
...  

Abstract Returning humans to the Moon presents an unprecedented opportunity to determine the origin of volatiles stored in the permanently shaded regions (PSRs), which trace the history of lunar volcanic activity, solar wind surface chemistry, and volatile delivery to the Earth and Moon through impacts of comets, asteroids, and micrometeoroids. So far, the source of the volatiles sampled by the Lunar Crater Observation and Sensing Satellite (LCROSS) plume (1, 2) has remained undetermined. We show here that the source could not be volcanic outgassing and the composition is best explained by cometary impacts. Ruling out a volcanic source means that volatiles in the top 1–3 meters of the Cabeus PSR regolith may be younger than the latest volcanic outgassing event (~ 1 billion years ago; Gya) (3).


2020 ◽  
Author(s):  
Quentin Nenon ◽  
Andrew Poppe

<p>Phobos is the closest of the two moons of Mars and its surface is not only exposed to ions coming from the solar wind (mainly protons H+ and alpha particles He<sup>++</sup>), but is also bombarded by ions coming from Mars itself (mainly atomic and molecular oxygen ions O<sup>+</sup> and O<sub>2</sub><sup>+</sup>). Space weathering at Phobos would be intimately linked to the planetary atmospheric escape if Martian ions significantly alter the properties of the moon’s surface.<br />In this presentation, the long-term averaged ion environment seen by the surface of Phobos (omnidirectional and directional fluxes, and composition) is constructed from 4 years of ion measurements gathered in-situ by the NASA MAVEN mission. The MAVEN spacecraft repeatedly crossed the orbit of Phobos from January 2015 to February 2019 and was uniquely suited to unprecedently observe ions there with its three ion instruments: SWIA, STATIC, and SEP. These three experiments together constrain the entire range of ion kinetic energies that impact Phobos, from cold ions of a few eV to solar energetic ions of several MeV. In addition, the STATIC instrument (1 eV to 30 keV) is able to discriminate the mass of the observed ions by measuring their time-of-flight. This capability is important to understand the weathering of the surface of Phobos, as for instance the effect on the surface of a precipitating heavy molecular oxygen ion is significantly different from the one of a proton.<br />The relative importance of Martian and solar wind ions is in turn assessed from the observed ion omnidirectional fluxes for two space weathering effects: (1) surface sputtering, which is computed by using ion specie and energy-dependent sputtering yields available in the literature and (2) the production of vacancies inside the regolith grains, which is estimated with the SRIM software. (1) We find that Martian ions dominate solar wind ions in sputtering the surface of Phobos when the moon crosses the Martian magnetotail. We also reveal that molecular oxygen O<sub>2</sub><sup>+</sup> ions sputter as much as or more from the surface of Phobos than atomic O<sup>+</sup> ions. (2) Martian heavy ions significantly contribute to the production of vacancies in the uppermost nanometer of Phobos regolith grains. Finally, MAVEN directional flux measurements are used to study the anisotropy of the bombarding ion fluxes at Phobos, which we find implies an asymmetric weathering of the surface: the near side (always facing Mars) is primarily weathered by Martian ions, whereas the far side is primarily altered by solar wind ions. </p>


2019 ◽  
Vol 166 ◽  
pp. 9-22 ◽  
Author(s):  
E. Kallio ◽  
S. Dyadechkin ◽  
P. Wurz ◽  
M. Khodachenko
Keyword(s):  

2021 ◽  
Vol 27 (S1) ◽  
pp. 2260-2262
Author(s):  
Alexander Kling ◽  
Michelle Thompson ◽  
Jennika Greer ◽  
Philipp Heck

2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


1977 ◽  
Vol 39 ◽  
pp. 243-251 ◽  
Author(s):  
A. Dollfus ◽  
J. E. Geake ◽  
J. C. Mandeville ◽  
B. Zellner

Telescopic observations of the polarization of light by asteroids are interpreted on the basis of a systematic polarimetric analysis of terrestrial, meteoritic and lunar samples. Laboratory measurements were made using samples with different surface textures, and scanning electron microscope pictures were used to investigate the influence of microtexture and crystalline structure.It is demonstrated that asteioid surfaces do not accumulate thick regolithic layers of micro-fragments, as do the Moon and Mercury. This is because the majority of debris ejected by impacts are lost, due to the low gravitational escape velocity from these bodies. However, asteroids are not bare rocks, but are coated with a thin layer of adhesive debris. This coating apparently has the composition of the body itself. The fact that there is no indication of significant maturation by space weathering suggests that the dust which coats the surface of asteroids is frequently replaced by further impacts.Asteroids may be classified polarimetrically in several groups: those in group C are made of very dark material and behave like carbonaceous chondrites, or very dark Fe-rich basalts; Those in group S correspond to silicates and stony meteorites. A third group represented by Asteroid 21 Lutetia and 16 Psyche may be metallic.


Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2018 ◽  
Vol 45 (20) ◽  
Author(s):  
Brant M. Jones ◽  
Alex Aleksandrov ◽  
K. Hibbitts ◽  
M. D. Dyar ◽  
Thomas M. Orlando
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document