scholarly journals An Exogenic Origin for the Volatiles Sampled by the LCROSS Impact

Author(s):  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Dana Hurley ◽  
Alexis Bouquet ◽  
Kurt Retherford ◽  
...  

Abstract Returning humans to the Moon presents an unprecedented opportunity to determine the origin of volatiles stored in the permanently shaded regions (PSRs), which trace the history of lunar volcanic activity, solar wind surface chemistry, and volatile delivery to the Earth and Moon through impacts of comets, asteroids, and micrometeoroids. So far, the source of the volatiles sampled by the Lunar Crater Observation and Sensing Satellite (LCROSS) plume (1, 2) has remained undetermined. We show here that the source could not be volcanic outgassing and the composition is best explained by cometary impacts. Ruling out a volcanic source means that volatiles in the top 1–3 meters of the Cabeus PSR regolith may be younger than the latest volcanic outgassing event (~ 1 billion years ago; Gya) (3).

Lithos ◽  
1993 ◽  
Vol 30 (3-4) ◽  
pp. 207-221 ◽  
Author(s):  
Stuart Ross Taylor
Keyword(s):  
The Moon ◽  

2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 402-406 ◽  
Author(s):  
Yvonne J. Pendleton

AbstractAfter years of thinking the Moon is dry, we now know there are three manifestations in which water appears on the Moon today: 1) Previously hypothesized buried deposits of volatiles at the lunar poles were found at Cabeus crater. There are questions about the origin of such volatiles (i.e., in-falling comets & meteorites, migration of recently formed surficial OH/H2O, and accumulated release from the interior), but there is no doubt the water is there. 2) Widespread, thinly-distributed, surficial OH (or H2O) has been clearly detected across all types of lunar terrain. The consensus is that the OH is derived from solar wind, but we do not know how quickly it forms, nor how mobile it is. 3) The amount of water present soon after the Moon formed is now documented in new analyses of lunar materials in volcanic glass beads, apatites and plagioclase feldspars. Apollo era sample analyses were not precise enough to distinguish between indigenous lunar water and terrestrial contamination. Measurements with modern equipment are more precise (both elemental and isotopic), and can better constrain a host of processes (e.g. diffusion, thermal cycling). Scientists around the world are studying lunar water. Ongoing analyses are informing a number of hypotheses and theories about the connection between the Earth and its wet Moon.


Reliable estimates of the bulk composition are so far restricted to the three planetary objects from which we have samples for laboratory investigation, i.e. the Earth, the Moon and the eucrite parent asteroid. The last, the parent body of the eucrite— diogenite family of meteorites, an object that like Earth and Moon underwent magmatic differentiations, seems to have an almost chondritic composition except for a considerable depletion of all moderately volatile (Na, K, Rb, F, etc.) and highly volatile (Cl, Br, Cd, Pb, etc.) elements. The Moon is also depleted in moderately volatile and volatile elements compared to carbonaceous chondrites of type 1 (Cl) and also compared to the Earth. Again normalized to Cl and Si the Earth’s mantle and the Moon are slightly enriched in refractory lithophile elements and in magnesium. It might be that this enrichment is fictitious and only due to the normalization to Si and that both Earth’s mantle and Moon are depleted in Si, which partly entered the Earth’s core in metallic form. The striking depletion of the Earth’s mantle for the elements V, Cr and Mn can also be explained by their partial removal into the core. The similar abundances of V, Cr and Mn in the Moon and in the Earth’s mantle indicate the strong genetic relationship of Earth and Moon. Apart from their contents of metallic iron, all siderophile elements, moderately volatile and volatile elements, Earth and Moon are chemically very similar. It might well be that, with these exceptions and that of a varying degree of oxidation, all the inner planets have a similar chemistry. The chemical composition of the Earth’s mantle, for which reliable and accurate data have recently been obtained from the study of ultramafic nodules, yields important information about the accretion history of the Earth and that of the inner planets. It seems that accretion started with highly reduced material, with all Fe as metal and even Si and Cr, V and Mn partly in reduced state, followed by the accretion of more and more oxidized matter.


Icarus ◽  
1962 ◽  
Vol 1 (1-6) ◽  
pp. 357-363 ◽  
Author(s):  
H. Alfvén
Keyword(s):  
The Moon ◽  

ELFALAKY ◽  
2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Heri Zulhadi

Abstract Hisab and rukyah are two methods of study used by Muslims to determine the start time of prayer, fasting, hajj and so forth. Periodesasi hisab rukyah, at a glance must have imagined what is meant by hisab rukyah. In the discourse about the Hijri calendar known by the term hisab and rukyah. Hisab is a calendar calculation system based on the average circulation of the moon that surrounds the earth and is conventionally defined. This reckoning system began since the establishment of Caliph Umar ibn Khattab ra (17H) as a reference for composing an enduring Islamic calendar. Another opinion says that this calendar system started in 16 H or 18 H, but the more popular is the year 17 H. While Rukyah is seeing the hilal directly with the naked eye or with the help of tools such as telescopes or other tools that support to see the new moon every end of Qamariyah month. The word rukyah is more famous as rukyatul hilalyaitu see moon. In this study, the author will describe a little about the history of hisab and rukyah in the period of prophets, companions, tabi'in, mid to modern period today. In this study, the scope of hisab rukya includes prayer times, Qibla direction, the beginning of Qamariyah month, eclipse and hijri calendar. Keyword: Hisab, Rukyah.


2019 ◽  
Author(s):  
Laura Vuorinen ◽  
Heli Hietala ◽  
Ferdinand Plaschke

Abstract. Magnetosheath jets are localized regions of plasma that move faster towards the Earth than the surrounding magnetosheath plasma. Due to their high velocities, they can cause indentations when colliding into the magnetopause and trigger processes such as magnetic reconnection and magnetopause surface waves. We statistically study the occurrence of these jets in the subsolar magnetosheath using measurements from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and OMNI solar wind data from 2008–2011. We present the observations in the BIMF-vSW plane and study the spatial distribution of jets during different interplanetary magnetic field (IMF) orientations. Jets occur downstream of the quasi-parallel bow shock approximately 9 times as often as downstream of the quasi-perpendicular shock, suggesting that foreshock processes are responsible for most jets. For oblique IMF, with 30°–60° cone angle, the occurrence increases monotonically from the quasi-perpendicular side to the quasi-parallel side. This study offers predictability for the numbers and locations of jets observed during different IMF orientations allowing us to better forecast the formation of these jets and their impact on the magnetosphere.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


Sign in / Sign up

Export Citation Format

Share Document