scholarly journals Simulations of Zonal Mean Gravity Wave Drag Short‐Term Variability in the Southern Hemisphere Mesosphere

2018 ◽  
Vol 123 (21) ◽  
pp. 11,849-11,860 ◽  
Author(s):  
N. M. Pedatella ◽  
A. K. Smith ◽  
H.‐L. Liu
2013 ◽  
Vol 70 (7) ◽  
pp. 2120-2136 ◽  
Author(s):  
Hyun-Joo Choi ◽  
Hye-Yeong Chun

Abstract The excessively strong polar jet and cold pole in the Southern Hemisphere winter stratosphere are systematic biases in most global climate models and are related to underestimated wave drag in the winter extratropical stratosphere—namely, missing gravity wave drag (GWD). Cumulus convection is strong in the winter extratropics in association with storm-track regions; thus, convective GWD could be one of the missing GWDs in models that do not adopt source-based nonorographic GWD parameterizations. In this study, the authors use the Whole Atmosphere Community Climate Model (WACCM) and show that the zonal-mean wind and temperature biases in the Southern Hemisphere winter stratosphere of the model are significantly alleviated by including convective GWD (GWDC) parameterizations. The reduction in the wind biases is due to enhanced wave drag in the winter extratropical stratosphere, which is caused directly by the additional GWDC and indirectly by the increased existing nonorographic GWD and resolved wave drag in response to the GWDC. The cold temperature biases are alleviated by increased downwelling in the winter polar stratosphere, which stems from an increased poleward motion due to enhanced wave drag in the winter extratropical stratosphere. A comparison between two simulations separately using the ray-based and columnar GWDC parameterizations shows that the polar night jet with a ray-based GWDC parameterization is much more realistic than that with a columnar GWDC parameterization.


2009 ◽  
Vol 22 (10) ◽  
pp. 2726-2742 ◽  
Author(s):  
Tiffany A. Shaw ◽  
Michael Sigmond ◽  
Theodore G. Shepherd ◽  
John F. Scinocca

Abstract The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.


2015 ◽  
Vol 72 (11) ◽  
pp. 4393-4411 ◽  
Author(s):  
Guillermo Scheffler ◽  
Manuel Pulido

Abstract The role of planetary wave drag and gravity wave drag in the breakdown of the stratospheric polar vortex and its associated final warming in the Southern Hemisphere is examined using reanalyses from MERRA and a middle-atmosphere dynamical model. The focus of this work is on identifying the causes of the delay in the final breakdown of the stratospheric polar vortex found in current general circulation models. Sensitivity experiments were conducted by changing the launched momentum flux in the gravity wave drag parameterization. Increasing the launched momentum flux produces a delay of the final warming date with respect to the control integration of more than 2 weeks. The sensitivity experiments show significant interactions between planetary waves and unresolved gravity waves. The increase of gravity wave drag in the model is compensated by a strong decrease of Eliassen–Palm flux divergence (i.e., planetary wave drag). This concomitant decrease of planetary wave drag is at least partially responsible for the delay of the final warming in the model. Experiments that change the resolved planetary wave activity entering the stratosphere through artificially changing the bottom boundary flux of the model also show an interaction mechanism. Gravity wave drag responds via critical-level filtering to planetary wave drag perturbations by partially compensating them. Therefore, there is a feedback cycle that leads to a partial compensation between gravity wave and planetary wave drag.


2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


2017 ◽  
Vol 52 (10) ◽  
pp. 1355-1362 ◽  
Author(s):  
Jakob Usemann ◽  
Désirée Demann ◽  
Pinelopi Anagnostopoulou ◽  
Insa Korten ◽  
Olga Gorlanova ◽  
...  

Author(s):  
Kaj M. Hansen ◽  
Jesper H. Christensen ◽  
Jørgen Brandt ◽  
Lise M. Frohn ◽  
Camilla Geels ◽  
...  

2015 ◽  
Vol 29 (8) ◽  
pp. 1145-1164 ◽  
Author(s):  
Samuel T. Wilson ◽  
Benedetto Barone ◽  
Francois Ascani ◽  
Robert R. Bidigare ◽  
Matthew J. Church ◽  
...  

2018 ◽  
Vol 54 (S1) ◽  
pp. 385-402 ◽  
Author(s):  
Hyun-Joo Choi ◽  
Ji-Young Han ◽  
Myung-Seo Koo ◽  
Hye-Yeong Chun ◽  
Young-Ha Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document