scholarly journals Advective Controls on the North Atlantic Anthropogenic Carbon Sink

2020 ◽  
Vol 34 (7) ◽  
Author(s):  
S. M. Ridge ◽  
G. A. McKinley
2019 ◽  
Author(s):  
Matthew P. Couldrey ◽  
Kevin I. C. Oliver ◽  
Andrew Yool ◽  
Paul R. Halloran ◽  
Eric P. Achterberg

Abstract. The North Atlantic carbon sink is a prominent component of global climate, storing large amounts of atmospheric carbon dioxide (CO2), but this basin’s CO2 uptake variability presents challenges for future climate prediction. A comprehensive mechanistic understanding of the processes that give rise to year-to-year (interannual) and decade-to-decade (decadal) variability in the North Atlantic’s dissolved inorganic carbon (DIC) inventory is lacking. Here, we numerically simulate the oceanic response to human-induced (anthropogenic) climate change from the industrial era to the year 2100. The model distinguishes how different physical, chemical, and biological processes modify the basin’s DIC inventory; the saturation, soft tissue, and carbonate pumps, anthropogenic emissions, and other processes causing air-sea disequilibria. There are four ‘natural’ pools (saturation, soft tissue, carbonate, and disequilibrium), and an ‘anthropogenic’ pool. Interannual variability of the North Atlantic DIC inventory arises primarily due to temperature- and alkalinity-induced changes in carbon solubility (saturation concentrations). A mixture of saturation and anthropogenic drivers cause decadal variability. Multidecadal variability results from the opposing effects of saturation versus soft tissue carbon, and anthropogenic carbon uptake. By the year 2100, the North Atlantic gains 66 Pg (1 Pg = 1015 grams) of anthropogenic carbon, and the natural carbon pools collectively decline by 4.8 Pg. The first order controls on interannual variability of the North Atlantic carbon sink size are therefore largely physical, and the biological pump emerges as an important driver of change on multidecadal timescales. Further work should identify specifically which physical processes underlie the interannual saturation-dominated DIC variability documented here.


2005 ◽  
Vol 2 (1) ◽  
pp. 87-96 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea on the NW European continental shelf. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The North Sea acts as a sink for organic carbon and thus can be characterised as a heterotrophic system. The dominant carbon sink is the final export to the North Atlantic Ocean. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2009 ◽  
Vol 23 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
David J. Ullman ◽  
Galen A. McKinley ◽  
Val Bennington ◽  
Stephanie Dutkiewicz

2002 ◽  
Vol 16 (4) ◽  
pp. 85-1-85-9 ◽  
Author(s):  
Christoph Völker ◽  
Douglas W. R. Wallace ◽  
Dieter A. Wolf-Gladrow

2012 ◽  
Vol 9 (1) ◽  
pp. 989-1019 ◽  
Author(s):  
N. R. Bates ◽  
M. H. P. Best ◽  
K. Neely ◽  
R. Garley ◽  
A. G. Dickson ◽  
...  

Abstract. Fossil fuel use, cement manufacture and land-use changes are the primary sources of anthropogenic carbon dioxide (CO2) to the atmosphere, with the ocean absorbing 30 %. Ocean uptake and chemical equilibration of anthropogenic CO2with seawater results in a gradual reduction in seawater pH and saturation states (Ω) for calcium carbonate (CaCO3) minerals in a process termed ocean acidification. Assessing the present and future impact of ocean acidification on marine ecosystems requires detection of the multi-decadal rate of change across ocean basins and at ocean time-series sites. Here, we show the longest continuous record of ocean CO2 changes and ocean acidification in the North Atlantic subtropical gyre near Bermuda from 1983–2011. Dissolved inorganic carbon (DIC) and partial pressure of CO2 (pCO2) increased in surface seawater by ~40 μmol kg−1 and ~50 μatm (~20 %), respectively. Increasing Revelle factor (β) values imply that the capacity of North Atlantic surface waters to absorb CO2 has also diminished. As indicators of ocean acidification, seawater pH decreased by ~0.05 (0.0017 yr−1) and Ω values by ~7–8 %. Such data provide critically needed multi-decadal information for assessing the North Atlantic Ocean CO2sink and the pH changes that determine marine ecosystem responses to ocean acidification.


2004 ◽  
Vol 1 (1) ◽  
pp. 367-392 ◽  
Author(s):  
H. Thomas ◽  
Y. Bozec ◽  
H. J. W. de Baar ◽  
K. Elkalay ◽  
M. Frankignoulle ◽  
...  

Abstract. A carbon budget has been established for the North Sea, a shelf sea of the NW European continental shelf. The air-sea exchange of CO2 has been assessed as closing term of the budget. The carbon exchange fluxes with the North Atlantic Ocean dominate the gross carbon budget. The net carbon budget – more relevant to the issue of the contribution of the coastal ocean to the marine carbon cycle – is dominated by the carbon inputs from rivers, the Baltic Sea and the atmosphere. The dominant carbon sink is the final export to the North Atlantic Ocean. The North Sea acts as a sink for organic carbon. More than 90% of the CO2 taken up from the atmosphere is exported to the North Atlantic Ocean making the North Sea a highly efficient continental shelf pump for carbon.


2016 ◽  
Vol 30 (6) ◽  
pp. 844-858 ◽  
Author(s):  
Ben Bronselaer ◽  
Laure Zanna ◽  
David R. Munday ◽  
Jason Lowe

Sign in / Sign up

Export Citation Format

Share Document