A Machine Learning Approach to Developing Ground Motion Models From Simulated Ground Motions

2020 ◽  
Vol 47 (6) ◽  
Author(s):  
Kyle B. Withers ◽  
Morgan P. Moschetti ◽  
Eric M. Thompson
Author(s):  
Soumya Kanti Maiti ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Models for estimating earthquake ground motions are a key component in seismic hazard analysis. In data-rich regions, these models are mostly empirical, relying on the ever-increasing ground-motion databases. However, in areas in which strong-motion data are scarce, other approaches for ground-motion estimates are sought, including, but not limited to, the use of simulations to replace empirical data. In Israel, despite a clear seismic hazard posed by the active plate boundary on its eastern border, the instrumental record is sparse and poor, leading to the use of global models for hazard estimation in the building code and all other engineering applications. In this study, we develop a suite of alternative ground-motion models for Israel, based on an empirical database from Israel as well as on four data-calibrated synthetic databases. Two host models are used to constrain model behavior, such that the epistemic uncertainty is captured and characterized. Despite the lack of empirical data at large magnitudes and short distances, constraints based on the host models or on the physical grounds provided by simulations ensure these models are appropriate for engineering applications. The models presented herein are cast in terms of the Fourier amplitude spectra, which is a linear, physical representation of ground motions. The models are suitable for shallow crustal earthquakes; they include an estimate of the median and the aleatory variability, and are applicable in the magnitude range of 3–8 and distance range of 1–300 km.


2021 ◽  
Author(s):  
Karina Loviknes ◽  
Danijel Schorlemmer ◽  
Fabrice Cotton ◽  
Sreeram Reddy Kotha

<p>Non-linear site effects are mainly expected for strong ground motions and sites with soft soils and more recent ground-motion models (GMM) have started to include such effects. Observations in this range are, however, sparse, and most non-linear site amplification models are therefore partly or fully based on numerical simulations. We develop a framework for testing of non-linear site amplification models using data from the comprehensive Kiban-Kyoshin network in Japan. The test is reproducible, following the vision of the Collaboratory for the Study of Earthquake Predictability (CSEP), and takes advantage of new large datasets to evaluate <span>whether or not</span> non-linear site effects predicted by site-amplification models are supported by empirical data. The site amplification models are tested using residuals between the observations and predictions from a GMM based only on magnitude and distance. When the GMM is derived without any site term, the site-specific variability extracted from the residuals is expected to capture the site response of a site. The non-linear site amplification models are tested against a linear amplification model on individual well-record<span>ing</span> stations. Finally, the result is compared to building codes where non-linearity is included. The test shows that for most of the sites selected as having sufficient records, the non-linear site-amplification models do not score better than the linear amplification model. This suggests that including non-linear site amplification in GMMs and building codes may not yet be justified, at least not in the range of ground motions considered in the test (peak ground acceleration < 0.2 g).</p>


Author(s):  
Paul Somerville

This paper reviews concepts and trends in seismic hazard characterization that have emerged in the past decade, and identifies trends and concepts that are anticipated during the coming decade. New methods have been developed for characterizing potential earthquake sources that use geological and geodetic data in conjunction with historical seismicity data. Scaling relationships among earthquake source parameters have been developed to provide a more detailed representation of the earthquake source for ground motion prediction. Improved empirical ground motion models have been derived from a strong motion data set that has grown markedly over the past decade. However, these empirical models have a large degree of uncertainty because the magnitude - distance - soil category parameterization of these models often oversimplifies reality. This reflects the fact that other conditions that are known to have an important influence on strong ground motions, such as near- fault rupture directivity effects, crustal waveguide effects, and basin response effects, are not treated as parameters of these simple models. Numerical ground motion models based on seismological theory that include these additional effects have been developed and extensively validated against recorded ground motions, and used to estimate the ground motions of past earthquakes and predict the ground motions of future scenario earthquakes. The probabilistic approach to characterizing the ground motion that a given site will experience in the future is very compatible with current trends in earthquake engineering and the development of building codes. Performance based design requires a more comprehensive representation of ground motions than has conventionally been used. Ground motions estimates are needed at multiple annual probability levels, and may need to be specified not only by response spectra but also by suites of strong motion time histories for input into time-domain non-linear analyses of structures.


2020 ◽  
Vol 110 (5) ◽  
pp. 2380-2397 ◽  
Author(s):  
Gemma Cremen ◽  
Maximilian J. Werner ◽  
Brian Baptie

ABSTRACT An essential component of seismic hazard analysis is the prediction of ground shaking (and its uncertainty), using ground-motion models (GMMs). This article proposes a new method to evaluate (i.e., rank) the suitability of GMMs for modeling ground motions in a given region. The method leverages a statistical tool from sensitivity analysis to quantitatively compare predictions of a GMM with underlying observations. We demonstrate the performance of the proposed method relative to several other popular GMM ranking procedures and highlight its advantages, which include its intuitive scoring system and its ability to account for the hierarchical structure of GMMs. We use the proposed method to evaluate the applicability of several GMMs for modeling ground motions from induced earthquakes due to U.K. shale gas development. The data consist of 195 recordings at hypocentral distances (R) less than 10 km for 29 events with local magnitude (ML) greater than 0 that relate to 2018/2019 hydraulic-fracture operations at the Preston New Road shale gas site in Lancashire and 192 R<10  km recordings for 48 ML>0 events induced—within the same geologic formation—by coal mining near New Ollerton, North Nottinghamshire. We examine: (1) the Akkar, Sandikkaya, and Bommer (2014) models for European seismicity; (2) the Douglas et al. (2013) model for geothermal-induced seismicity; and (3) the Atkinson (2015) model for central and eastern North America induced seismicity. We find the Douglas et al. (2013) model to be the most suitable for almost all of the considered ground-motion intensity measures. We modify this model by recomputing its coefficients in line with the observed data, to further improve its accuracy for future analyses of the seismic hazard of interest. This study both advances the state of the art in GMM evaluation and enhances understanding of the seismic hazard related to U.K. shale gas development.


2010 ◽  
Vol 26 (4) ◽  
pp. 1117-1138 ◽  
Author(s):  
Frank Scherbaum ◽  
Nicolas M. Kuehn ◽  
Matthias Ohrnberger ◽  
Andreas Koehler

Logic trees have become a popular tool to capture epistemic uncertainties in seismic hazard analysis. They are commonly used by assigning weights to models on a purely descriptive basis (nominal scale). This invites the creation of unintended inconsistencies regarding the weights on the corresponding hazard curves. On the other hand, for human experts it is difficult to confidently express degrees-of-beliefs in particular numerical values. Here we demonstrate for ground-motion models how the model and the value-based perspectives can be partially reconciled by using high-dimensional information-visualization techniques. For this purpose we use Sammon's (1969) mapping and self-organizing mapping to project ground-motion models onto a two-dimensional map (an ordered metric set). Here they can be evaluated jointly according to their proximity in predicting similar ground motions, potentially making the assignment of logic tree weights consistent with their ground motion characteristics without having to abandon the model-based perspective.


Author(s):  
Alexis Klimasewski ◽  
Valerie Sahakian ◽  
Amanda Thomas

ABSTRACT Traditional, empirical ground-motion models (GMMs) are developed by prescribing a functional form between predictive parameters and ground-motion intensity measures. Machine-learning techniques may serve as a fully data-driven alternative to widely used regression techniques, as they do not require explicitly defining these relationships. Although, machine-learning methods offer a nonparametric alternative to regression methods, there are few studies that develop and assess performance of traditional versus machine-learning GMMs side by side. We compare the performance and behavior of these two approaches: a mixed-effects maximum-likelihood (MEML) model and a feed-forward artificial neural network (ANN). We develop and train both models on the same dataset from southern California. We subsequently test both models on a dataset from the 2019 Ridgecrest sequence, in a new region and on magnitudes outside the range of the training dataset, to examine model portability. Our models estimate horizontal peak ground acceleration, and the input parameters include moment magnitude (M) and hypocentral distance (Rhyp), and some include a site parameter, either VS30 or κ0. We find that, with our small set of input parameters, the ANN generally shows more site-specific predictions than the MEML model with more variation between sites, and, performs better than their corresponding MEML model, when applied “blind” to our testing dataset (in which the MEML random effects cannot be considered). Although, previous studies have found that κ0 may be a better predictor of site effects than VS30, we found similar performance, suggesting that including a site parameter may be more important than the physical meaning of the parameter. Finally, when applying our models to our Ridgecrest dataset, we find that both methods perform well; however, the MEML models perform better with the new dataset than the ANN models, suggesting that future applications of ANN models may need to consider how to accommodate model portability.


Author(s):  
Xiaofen Zhao ◽  
Zengping Wen ◽  
Junju Xie ◽  
Quancai Xie ◽  
Kuo-En Ching

ABSTRACT Pulse-like ground motions cause severe damage in structures at certain periods. Hence, pulse effects need to be considered during probabilistic seismic hazard analysis and seismic design in the near-fault region. Traditional ground-motion models used to quantify the hazard posed by pulse-like ground motions may underestimate them, but they are relatively suitable for describing the residual ground motions after extracting pulses. Nevertheless, the applicability of Next Generation Attenuation-West2 Project (NGA-West2) models to pulse and residual ground motions has not been evaluated. Moreover, the applicability of recently developed directivity models, including the Shahi and Baker (2011; hereafter, SB2011), Chang et al. (2018; hereafter, Chang2018), and Rupakhety et al. (2011; hereafter, Rupakhety2011) models, has not been investigated for this event. Here, based on the abundance of pulse-like ground motions recorded during the Mw 6.4 Hualien earthquake, the applicability of NGA-West2 models and directivity models was quantitatively evaluated. In summary, (1) The applicability of NGA-West2 models to the observed original and residual ground motions varies significantly at different periods. The suggests that NGA-West2 models overestimate the original and residual ground motions for short periods (T<1.0  s), but are suitable for describing the residual ground motions yet underestimate the original ground motions for long periods (T≥1.0  s). (2) Pulse periods and amplification bands due to pulses are unusually larger than previous events. Similar to the Chang2018 model, the plateau of this event starts and ends at the periods of 0.70 and 1.1 times the pulse period. However, the Chang2018 and SB2011 models underestimate the constant ordinate of this plateau. Spectral ordinates of the spectral shape curve due to pulses for the short period (∼Tn<1.3  s) are smaller than the predictions from the Rupakhety2011 model. The trend was reversed for long periods (∼Tn>3.0  s). Compared with the Rupakhety2011 model, the peak location of the spectral shape curve is shifted to the long period. These results will be helpful for updating these models in the near future.


1978 ◽  
Vol 68 (3) ◽  
pp. 757-765
Author(s):  
Lewis J. Katz ◽  
Robert S. Bellon

abstract Current microzonation mapping procedures often call for the generation of complicated mathematical ground-motion models. These models require that expensive geophysical and geological surveys be performed to gather input information. A more desirable method of estimating ground motions would be to measure these effects directly. Microtremor analysis procedures provide such a direct method. Microtremor data were collected at several sites at Beatty, Nevada, and compared to nuclear event and mathematical model ground-motion spectra. The frequency at which peak amplitudes occurred on all spectra agreed. These frequencies appear at the resonance frequency of the surface layer when stimulated by compressional waves. Results of this experiment add validity to the use of microtremors in microzonation studies.


Sign in / Sign up

Export Citation Format

Share Document