Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array

Author(s):  
Gao‐xiong Wu ◽  
Lei Pan ◽  
Jian‐nan Wang ◽  
Xiaofei Chen
2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


2021 ◽  
Author(s):  
◽  
Rachel Heckels

<p>Ambient seismic noise is used to examine the spatial and temporal surface wave velocity structures and ambient seismic noise fields in the vicinity of different fault zone environments. This study focuses on two distinct regions of central South Island, New Zealand. The Canterbury Plains is a sedimentary basin with many minor faults, which was considered to have low seismic hazard prior to the 2010 – 2011 Canterbury earthquake sequence. We focus on the time period immediately following the 2010 Darfield earthquake, which ruptured the previously unmapped Greendale Fault. The second region of interest is the central Southern Alps. The locked portion of the Alpine Fault currently poses one of the largest seismic hazards for New Zealand. The wealth of data from both permanent and temporary seismic deployments in these regions make them ideal areas in which to assess the effectiveness of ambient noise for velocity modelling in regions surrounding faults at different stages of their seismic cycles.  Temporal velocity changes are measured following the Mw 7.1 Darfield earthquake of 4 September 2010 in the Canterbury Plains. Nine-component cross-correlations are computed from temporary and permanent seismic stations lying on and surrounding the Greendale Fault. Using the Moving-Window Cross-Spectral method, surface wave velocity changes are calculated for the four months immediately following the earthquake until 10 January 2011, for 0.1 — 1.0 Hz. An average increase in seismic velocity of 0.14 ± 0.04 % is determined throughout the region, providing the first such estimate of postseismic relaxation rates in Canterbury. Depth analyses further showed that velocity changes are confined to the uppermost 5 km of the subsurface and we attribute this to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.  Rayleigh and Love wave dispersion is examined throughout the Canterbury region. Multi-component cross-correlation functions are analysed for group and phase dispersion curves. These are inverted using frequency-time analysis for 2-D phase and group velocity maps of Rayleigh and Love waves. A high-velocity zone to the southeast of the region coincides with volcanic rocks of Banks Peninsula. Dispersion curves generated from the surface wave tomography are further inverted for one-dimensional shear velocity profiles. These models show a thin, low-velocity near surface layer consistent with the basin sediments, which thins towards the foothills of the Southern Alps. A near-surface damage zone is identified along the length of the Greendale Fault, with consistent reduced Vs velocities to depth of up to 5 km.  Surface and shear wave velocity maps are computed for the central Southern Alps to image the seismic structure of the region. Tomographic surface maps at periods of 5 – 12 s are produced from dispersion measurements of three-component cross-correlation functions. At periods of 5 – 8 s a strong NE-SW trending velocity contrast highlights the Alpine Fault. One-dimensional shear velocity models, computed from the surface wave maps, are in agreement with previous models produced by other conventional methods. An analysis of surface wave amplitudes through signal-to-noise ratios of cross-correlations reveals strong directional effects. Calculated signal-to-noise ratios are up to eight times higher for surface waves travelling north-west than for waves travelling to the south or east. We attribute this to a combination of more energetic ocean wave signals from the Southern Ocean compared to the Tasman Sea.</p>


Author(s):  
J Salomón ◽  
C Pastén ◽  
S Ruiz ◽  
F Leyton ◽  
M Sáez ◽  
...  

Summary The seismic response of the Santiago City, the capital of Chile with more than 5.5 million inhabitants, is controlled by the properties of the shallower quaternary deposits and the impedance contrast with the underlying Abanico formation, among other factors. In this study, we process continuous records of ambient seismic noise to perform an ambient seismic noise tomography with the aim of defining the shallower structure of the Abanico formation underneath the densely populated metropolitan area of Santiago, Chile. The seismic signals were recorded by a network consisting of 29 broadband seismological stations and 12 accelerograph stations, located in a 35 × 35 km2 quadrant. We used the average coherency of the vertical components to calculate dispersion curves from 0.1 to 5 Hz and Bootstrap resampling to estimate the variance of the travel times. The reliable frequency band of the dispersion curves was defined by an empirical method based on sign normalization of the coherency real part. The ambient noise tomography was solved on a domain discretized into 256 2 × 2 km2 cells. Using a regularized weighted least squares inversion, we inverted the observed travel-times between stations, assuming straight ray paths, in order to obtain 2D phase velocity maps from 0.2 Hz to 1.1 Hz, linearly spaced every 0.05 Hz, in 157 of the 256 square cells of the domain. In each square cell with information, dispersion curves were assembled and used to invert shear wave velocity profiles, which were interpolated using the ordinary Kriging method to obtain a 3D shear wave velocity model valid from 0.6 to 5 km depth. The 3D velocity model shows that the Abanico formation is stiffer in the south of the study area with larger velocity anomalies towards the shallower part of the model. The value of the shear wave velocity narrows with depth, reaching an average value of 3.5 km/s from 3 to 5 km depth.


2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


2016 ◽  
Author(s):  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Ilmo Kukkonen ◽  
DAFNE/FINLAND Working Group

Abstract. Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011–May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green’s functions between pairs of stations in the frequency band of 0.1–1 Hz and to calculate correspondent surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curves inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) that remained after the last major earthquake that occurred after the last glaciation.


2019 ◽  
Vol 220 (3) ◽  
pp. 2074-2085
Author(s):  
Taghi Shirzad ◽  
Marcelo Assumpcao ◽  
Marcelo Bianchi

SUMMARY Surface wave analysis provides important information on crustal structure, but it is challenging to obtain accurate/robust models in aseismic regions because of the lack of local earthquake records. In this paper, interstation empirical Green's functions retrieved by ambient seismic noise in 75 broad-band stations from 2016 January to 2018 September were used to study crustal structure in west-central Brazil. Fast marching method was applied to calculate the 2-D surface wave tomographic maps, and local dispersion curves were estimated in the period range of 4–80 s for each geographic cell. 1-D damped least squares inversion method was then conducted to obtained shear wave velocity model. Finally, the average ($\tilde{\rm V}$S) of the calculated VSV and VSH quasi 3-D models were used to characterize the crustal structure. Besides the checkerboard test resolution, a stochastic test with the effect of errors in the dispersion curves and choice of inversion parameters were carried out to better evaluate model uncertainties. Our results show a clear relation between the sedimentary thickness and geological units with the shorter period tomographic maps. Agreement has also been observed in longer periods such as the clear N–S anomaly along the Asuncion and Rio Grande Arches representing the boundary between the Chaco-Paraná and the Paraná basins. A 3-D composite velocity model shows a crustal structure consisting of three main layers. Some differences in lower crustal properties were found between the Paraná and Chaco-Paraná basins, consistent with a recently postulated, gravity-derived Western Paraná suture zone. However, no high velocities along the SW–NE axis of the Paraná basin were found to confirm proposed underplating. At the eastern edge of the Pantanal basin, the thin crust seems to be associated with a very thin (or lack of) lower crustal layer, consistent with a recently proposed crustal delamination hypothesis for the formation of the Pantanal basin.


Sign in / Sign up

Export Citation Format

Share Document