scholarly journals Cooling and Vertical Motions of Crustal Wedges Prior to, During, and After Lateral Extrusion in the Eastern Alps: New Field Kinematic and Fission Track Data from the Mur‐Mürz Fault System

Tectonics ◽  
2020 ◽  
Vol 39 (3) ◽  
Author(s):  
I. E. Gelder ◽  
E. Willingshofer ◽  
P. A. M. Andriessen ◽  
R. Schuster ◽  
D. Sokoutis
2021 ◽  
Author(s):  
Vincent F. Verwater ◽  
Eline Le Breton ◽  
Mark R. Handy ◽  
Vincenzo Picotti ◽  
Azam Jozi Najafabadi ◽  
...  

Abstract. Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. These two domains are delimitated by the NW-SE oriented strike-slip Trento-Cles – Schio-Vicenza fault system, cross-cutting the Southern Alpine orogenic front in the south and merging with the Northern Giudicarie Fault in the north. The SW kinematic domain (Val Trompia sector) accommodated at least ~18 km of Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW kinematic domain experienced a minimum of ~12–22 km shortening, whereas the NE kinematic domain underwent at least ~25–35 km shortening. Together, these domains contributed to an estimated ~53–75 km of sinistral strike-slip motion along the Northern Giudicarie Fault, implying that (most of) the offset of the Periadriatic Fault is due to Late Oligocene to Neogene indentation of the Adriatic plate into the Eastern Alps. Moreover, the faults linking the Giudicarie Belt with the Northern Giudicarie Fault reach ~15–20 km depth, indicating a thick-skinned tectonic style of deformation. These fault detachments may also connect at depth with a lower crustal Adriatic wedge that protruded north of the Periadriatic Fault and was responsible for N-S shortening and eastward escape of deeply exhumed units in the Tauern Window. Finally, the east-west lateral variation of shortening indicates internal deformation and lateral variation in strength of the Adriatic indenter, related to Permian – Mesozoic tectonic structures and paleogeographic domains.


2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
Vít Růžička

Mur-Mürz-Leitha fault system represents the most important seismically active zone in the Eastern Alps. Its part of the geological units of the Eastern Alps. Pushing the influence of alpine units to the north during the Cretaceous there was a lateral extrusion, resulting in the formation of shear fractures (eg .: system MML). Based on data provided from the project ACORN, IPE and ZAMG. frequency-magnitude graph and temporal distribution chart since 1980 were compiled. Frequency-magnitude distribution show that borded of completeness of the data since 1980, have a value of magnitude 2 and higher. Therefore, the temporal distribution chart was created just since 1980, and magnitude of 2 and more. Above all the chart takes a set of occurrences of 2000, which number 37 events with a magnitude of 2 and 2 events with magnitude over 4. These occurrences come under the area 4. Then was made another temporal distribution chart since 1980, but this one is only for area 4. In area 4 Ebreichsdorf town is situated that is near the seismic swarm from the years of 2000 and 2013. The seismic swarm from 2013 is the similar like seismic swarm in 2000 just in a slightly smaller. These seismic occurrences of Ebreichsdorf are important, because they were macroseismic felt in the southern regions of the Czech Republic, including Brno.


Solid Earth ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 1309-1334
Author(s):  
Vincent F. Verwater ◽  
Eline Le Breton ◽  
Mark R. Handy ◽  
Vincenzo Picotti ◽  
Azam Jozi Najafabadi ◽  
...  

Abstract. Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern and Southern Alps. The Giudicarie Belt is a prime example of this, as it offsets the entire Alpine orogenic edifice; its activity has been kinematically linked to strike-slip faulting and lateral extrusion of the Eastern Alps. Remaining questions on the exact role of this fold-and-thrust belt in the structure of the Alpine orogen at depth necessitate a quantitative analysis of the shortening, kinematics, and depth of decoupling beneath the Giudicarie Belt and adjacent parts of the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local NNW–SSE shortening direction reveals that this belt comprises two kinematic domains that accommodated different amounts of shortening during overlapping times. These two domains are separated by the NW–SE-oriented strike-slip Trento-Cles–Schio-Vicenza fault system, which offsets the Southern Alpine orogenic front in the south and merges with the Northern Giudicarie Fault in the north. The SW kinematic domain (Val Trompia sector) accommodated at least ∼ 18 km of Late Oligocene to Early Miocene shortening. Since the Middle Miocene, this domain experienced at least ∼ 12–22 km shortening, whereas the NE kinematic domain accommodated at least ∼ 25–35 km shortening. Together, these domains contributed an estimated minimum of ∼ 40–47 km of sinistral strike-slip motion along the Northern Giudicarie Fault, implying that most offset of the Periadriatic Fault is due to Late Oligocene to Neogene indentation of the Adriatic plate into the Eastern Alps. Moreover, the faults linking the Giudicarie Belt with the Northern Giudicarie Fault reach ∼ 15–20 km depth, indicating a thick-skinned tectonic style of deformation. These fault detachments may also connect at depth with a lower crustal Adriatic wedge that protruded north of the Periadriatic Fault and are responsible for N–S shortening and eastward, orogen-parallel escape of deeply exhumed units in the Tauern Window. Finally, the E–W lateral variation of shortening across the Giudicarie Belt indicates internal deformation and lateral variation in strength of the Adriatic indenter related to Permian–Mesozoic tectonic structures and paleogeographic zones.


2017 ◽  
Vol 472 ◽  
pp. 82-94 ◽  
Author(s):  
I.E. van Gelder ◽  
E. Willingshofer ◽  
D. Sokoutis ◽  
S.A.P.L. Cloetingh

2021 ◽  
Author(s):  
Arthur Borzi ◽  
Werner E. Piller ◽  
Mathias Harzhauser ◽  
Wolfgang Siedl ◽  
Philipp Strauss

<p><strong>ABSTRACT</strong></p><p>The Vienna Basin is a rhombohedral SSW-NNE oriented Neogene extensional basin that formed along sinistral fault systems during Miocene lateral extrusion of the Eastern Alps. The basin fill consists of shallow marine and terrestrial sediments of early to late Miocene age reaching a thickness of 5500 m in the central part of the basin. The early Pannonian was a crucial time in the development of the Vienna Basin, as It coincided with the formation of Lake Pannon. The lake formed at 11.6 Ma when a significant regressive event isolated Lake Pannon from the Paratethys Sea, creating lacustrine depositional environments. At that time the delta of the Paleo-Danube started shedding its sediments into the central Vienna Basin. Based on an existing age model delta deposition commenced around 11.5 Ma and continued until 11.1 Ma. These subsurface deltaic deposits of the Hollabrunn-Mistelbach Formation represent the coeval fluvial deposits of the Paleo-Danube in the eastern plains of the North Alpine Foreland Basin. Therefore, the Palaeo-Danube represents an extraordinary case in where coeval fluvial and deltaic deposits of a Miocene river are continuously captured.</p><p>This study provides an interpretation of depositional architecture and depositional environments of this delta in the Austrian part of the central Vienna Basin based on the integration of 3D seismic surveys and well data. The mapped delta has an area of about 580 km<sup>2</sup>, and solely based on the geometry we classify the delta as a mostly river – dominated delta with significant influence of wave – reworking processes. For seven time slices paleogeographic maps are created, showing the interplay between the lacustrine environments of Lake Pannon, delta evolution and fluvial systems incising in the abandoned deltaplain. Onlaps between single deltalobes indicate a northward-movement of the main distributary channel. Approximate water-depth estimates are carried out with in-seismic measurements of the true vertical depth between the topset deposits of the delta and the base of the bottomset deposits. These data suggest a decrease of lake water depth from about 170 m during the initial phase of delta formation at 11.5 Ma to about 100 m during its terminal phase at 11.1 Ma. A major lake level rise of Lake Pannon around 11.1 Ma caused a flooding of the margins of the Vienna Basin, resulting in a back stepping of riverine deposits and termination of delta deposition in the study area.</p><p> </p>


2020 ◽  
Author(s):  
Takahiro Tagami

<p>Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012, 2019).  Fault-zone materials suitable for such analyses are produced by tectocic and geochemical processes, such as (1) mechanical fragmentation of host rocks, grain-size reduction of fragments and recrystallization of grains to form mica and clay minerals, (2) secondary heating/melting of host rocks by frictional fault motions, and (3) mineral vein formation as a consequence of fluid advection associated with fault motions.  The geothermal structure of fault zones are primarily controlled by the following three factors: (a) regional geothermal structure around the fault zone that reflect background thermo-tectonic history of studied province, (b) frictional heating of wall rocks by fault motions and resultant heat transfer into surrounding rocks, and (c) thermal influences by hot fluid advection in and around the fault zone.  Geochronological/thermochronological methods widely applied in fault zones are K-Ar (<sup>40</sup>Ar/<sup>39</sup>Ar), fission-track (FT), and U-Th methods.  In addition, (U-Th)/He, OSL, TL and ESR methods are applied in some fault zones, in order to extract temporal information related to low temperature and/or recent fault activities.  Here I briefly review the thermal sensitivity of individual thermochronological systems, which basically controls the response of each method against faulting processes.  Then, the thermal sensitivity of FTs is highlighted, with a particular focus on the thermal processes characteristic to fault zones, i.e., flash and hydrothermal heating.  On these basis, representative examples as well as key issues, including sampling strategy, are presented to make thermochronological analysis of fault-zone materials, such as fault gouges, pseudotachylytes and mylonites, along with geological, geomorphological and seismological implications.  Finally, the thermochronological analyses of the Nojima fault are overviewed, as an example of multidisciplinary investigations of an active seismogenic fault system.</p><p> </p><p>References:</p><ol><li>Tagami, 2012. Thermochronological investigation of fault zones. Tectonophys., 538-540, 67-85, doi:10.1016/j.tecto.2012.01.032.</li> <li>Tagami, 2019. Application of fission track thermochronology to analyze fault zone activity. Eds. M. G. Malusa, P. G. Fitzgerald, Fission track thermochronology and its application to geology, 393pp, 221-233, doi: 10.1007/978-3-319-89421-8_12.</li> </ol>


Tectonics ◽  
1991 ◽  
Vol 10 (2) ◽  
pp. 257-271 ◽  
Author(s):  
Lothar Ratschbacher ◽  
Wolfgang Frisch ◽  
Hans-Gert Linzer ◽  
Olivier Merle

Sign in / Sign up

Export Citation Format

Share Document