Hydrogeological Modeling and Water Resources Management: Improving the Link Between Data, Prediction, and Decision Making

2019 ◽  
Vol 55 (12) ◽  
pp. 10340-10357 ◽  
Author(s):  
Bradley Harken ◽  
Ching‐Fu Chang ◽  
Peter Dietrich ◽  
Thomas Kalbacher ◽  
Yoram Rubin
2013 ◽  
Vol 17 (12) ◽  
pp. 5013-5039 ◽  
Author(s):  
S. E. Thompson ◽  
M. Sivapalan ◽  
C. J. Harman ◽  
V. Srinivasan ◽  
M. R. Hipsey ◽  
...  

Abstract. Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle – a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science understanding of water systems, and is a priority for the developing field of sociohydrology.


2011 ◽  
pp. 524-539
Author(s):  
R. Farmani ◽  
D.A. Savic ◽  
H.J. Henriksen ◽  
J.L. Molina ◽  
R. Giordano ◽  
...  

A participatory integrated (social, economic, environmental) approach based on causal loop diagram, Bayesian belief networks and evolutionary multiobjective optimisation is proposed for efficient water resources management. The proposed methodology incorporates all the conflicting objectives in the decision making process. Causal loop diagram allows a range of different factors to be considered simultaneously and provides a framework within which the contributions of stakeholders can be taken into account. Bayesian belief networks takes into account uncertainty by assigning probability to those variables whose states are not certain. The integration of Bayesian belief network with evolutionary multiobjective optimisation algorithm allows analysis of trade-off between different objectives and incorporation and acknowledgement of a broader set of decision goals into the search and decision making process. The proposed methodology is used to model decision making process for complex environmental problems, considering uncertainties, addressing temporal dynamics, uncovering discrepancies in decision analysis process (e.g. completeness or redundancy of the model based on utility function) and generating policy options that trade-off between conflicting objectives. The effectiveness of the proposed methodology is examined in several water resources management problems. The case studies include optimum water demand management, UK; management of groundwater contamination of Copenhagen source capture zone areas, Denmark and simultaneous optimum management of four overexploited aquifers in Spain. It is shown that the proposed methodology generates large number of management options that trade-off between different objectives. The remaining task is to choose, depending on the preference of decision makers, a group of solutions for more detailed analysis.


2007 ◽  
Vol 56 (9) ◽  
pp. 1-12 ◽  
Author(s):  
M.W. Blind ◽  
J.C. Refsgaard

Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project ‘Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)’ has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.


Author(s):  
Georges F. Comair ◽  
Daene. C. McKinney ◽  
David R. Maidment ◽  
Gonzalo Espinoza ◽  
Harish Sangiredy ◽  
...  

2020 ◽  
Author(s):  
Seán Donegan ◽  
Conor Murphy ◽  
Shaun Harrigan ◽  
Ciaran Broderick ◽  
Saeed Golian ◽  
...  

Abstract. Skilful hydrological forecasts can benefit decision-making in water resources management and other water-related sectors that require long-term planning. In Ireland, no such service exists to deliver forecasts at the catchment scale. In order to understand the potential for hydrological forecasting in Ireland, we benchmark the skill of Ensemble Streamflow Prediction (ESP) for a diverse sample of 46 catchments using the GR4J hydrological model. Skill is evaluated within a 52-year hindcast study design over lead times of 1 day to 12 months for each of 12 initialisation months, January to December. Our results show that ESP is skilful against a probabilistic climatology benchmark in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. Mean ESP skill was found to decay rapidly as a function of lead time, with continuous ranked probability skill scores of 0.8 (1-day), 0.32 (2-week), 0.18 (1-month), 0.05 (3-month), and 0.01 (12-month). Forecasts were generally more skilful when initialised in summer than other seasons. A strong correlation (ρ = 0.94) was observed between forecast skill and catchment storage capacity (baseflow index), with the most skilful regions, the Midlands and East, being those where slowly responding, high storage catchments are located. Results also highlight the potential utility of ESP for decision-making, as measured by its ability to forecast low and high flow events. In addition to our benchmarking experiment, we conditioned ESP on the winter North Atlantic Oscillation (NAO) using adjusted hindcasts from the Met Office's Global Seasonal Forecasting System version 5. We found gains in winter forecast skill of 7–18 % were possible over lead times of 1 to 3 months, and that NAO-conditioned ESP is particularly effective at forecasting dry winters, a critical season for water resources management. We conclude that ESP is skilful in a number of different contexts and thus should be operationalised in Ireland given its potential benefits for water managers and other stakeholders.


2008 ◽  
Vol 31 (1) ◽  
pp. 1-11
Author(s):  
Lawrence N. Simitu ◽  
Patts M.A. Odira

Yatta Canal is situated in Yatta division, Machakos district about 100 km from Nairobi along Thika- Garissa road. It is about 60 Km long and supplies water for domestic, livestock and irrigation use. Over the years, the water supply has been unreliable especially during dry season leading to conflicts between upstream and downstream consumers. Sometimes the Government has been forced to intervene to restore order. The study aimed at assessing the use of Yatta canal, based on the principles of Integrated Water Resources Management (IWRM) which stipulates efficient use of water and involvement of all stakeholders in decision making for sustainability. Based on this concept, it was established that the current water demand outstrips supply and that there is inefficient water use especially for irrigation. Waterallocation process favours landowners, and stakeholders are not fully involved in planning, management and development. Further, women’s participation in decision-making is minimal. There is no environmental voice during water allocation and thus the reserve/ base flow in the canal has not been maintained. This means that IWRM concept has not been practiced and this has resulted to conflict among various water users. As Yatta canal gets water from Thika river, there is need to establish Thika river basin water users association where stakeholders can influence decisions on water allocation and management. This will create a forum to discuss efficient water use at all levels and promote internal policing to ensure fair allocation, thus minimizing conflicts and promoting the IWRM concept.


Sign in / Sign up

Export Citation Format

Share Document