scholarly journals Trajectory Simulation and Prediction of COVID‐19 via Compound Natural Factor (CNF) Model in EDBF Algorithm

2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Zhengkang Zuo ◽  
Sana Ullah ◽  
Lei Yan ◽  
Yiyuan Sun ◽  
Fei Peng ◽  
...  
2021 ◽  
Author(s):  
Zhengkang Zuo ◽  
Sana Ullah ◽  
Yiyuan Sun ◽  
Fei Peng ◽  
Kaiwen Jiang

2013 ◽  
Vol 9 (1) ◽  
Author(s):  
C. Del Hierro
Keyword(s):  

El propósito de este artículo, es presentar información básica sobre la medición de caudal de gas natural, utilizando como elemento primario de medición placas orificio. Esta tecnología esta aplicada en los sistemas de medición de gas natural que se utiliza en Ecuador para la transferencia de custodio entre una planta de acondicionamiento de combustible y las centrales de generación termoeléctrica, como también para la medición del combustible consumido por las unidades de generación. Entre los conceptos a mencionarse en este artículo están la recolección y manipulación de muestras de gas natural, factor de compresibilidad, poder calorífico y el costo de la incertidumbre. Como marco teórico para los requerimientos de especificaciones e instalación de los sistemas de medición de flujo y cálculo para medición de flujo de gas natural, se utilizará la norma API MPMS capítulo 14, la norma OILM R137-1:2006 y OILM R 140, y la norma ISO 5160.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1960
Author(s):  
Azade Fotouhi ◽  
Ming Ding ◽  
Mahbub Hassan

In this paper, we address the application of the flying Drone Base Stations (DBS) in order to improve the network performance. Given the high degrees of freedom of a DBS, it can change its position and adapt its trajectory according to the users movements and the target environment. A two-hop communication model, between an end-user and a macrocell through a DBS, is studied in this work. We propose Q-learning and Deep Q-learning based solutions to optimize the drone’s trajectory. Simulation results show that, by employing our proposed models, the drone can autonomously fly and adapts its mobility according to the users’ movements. Additionally, the Deep Q-learning model outperforms the Q-learning model and can be applied in more complex environments.


1982 ◽  
Vol 93 (2) ◽  
pp. 402-410 ◽  
Author(s):  
J R Couchman ◽  
D A Rees ◽  
M R Green ◽  
C G Smith

Fibronectin (FN), which is already known to be a natural factor for fibroblast spreading on substrata, has now been shown to be essential for two distinct types of adhesion with different biological functions in chick heart fibroblasts, namely adhesion directed toward locomotion and toward stationary anchorage for growth. Manipulation of culture conditions and the use of antisera of differing specificities has demonstrated that both exogenous and cell-derived FN are important in each process. The organization of the fibronectin-containing matrix differs between the two states. Immunoelectron microscopy with a colloidal gold marker reveals the presence of small membrane-associated plaques of fibronectin in motile cells with associated submembranous specialization. A fibrillar matrix containing fibronectin is dominant in nonmotile, growing fibroblasts. The development of focal adhesions for stationary anchorage can be dramatically enhanced by addition of cell-derived FN at an appropriate stage, and this promotes entry into the growth cycle. New macromolecular synthesis in addition to FN is necessary for focal adhesion development but not for locomotion.


Author(s):  
Alexander Bertino ◽  
Peiman Naseradinmousavi ◽  
Atul Kelkar

Abstract In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.


2018 ◽  
Vol 10 (12) ◽  
pp. 2046 ◽  
Author(s):  
Haiyun Shi ◽  
Yuhan Cao ◽  
Changming Dong ◽  
Changshui Xia ◽  
Chunhui Li

A river island is a shaped sediment accumulation body with its top above the water’s surface in crooked or branching streams. In this paper, four river islands in Yangzhong City in the lower reaches of the Yangtze River were studied. The spatio-temporal evolution information of the islands was quantitatively extracted using the threshold value method, binarization model, and cluster analysis, based on Thematic Mapper (TM) and Enhanced Thematic Mapper+ (ETM+) images of the Landsat satellite series from 1985 to 2015. The variation mechanism and influencing factors were analyzed using an unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM) hydrodynamic numerical simulation, as well as the water-sediment data measured by hydrological stations. The annual average total area of these islands was 251,224.46 m2 during 1985–2015, and the total area first increased during 1985–2000 and decreased later during 2000–2015. Generally, the total area increased during these 30 years. Taipingzhou island had the largest area and the biggest changing rate, Xishadao island had the smallest area, and Zhongxinsha island had the smallest changing rate. The river islands’ area change was influenced by river runoff, sediment discharge, and precipitation, and sediment discharge proved to be the most significant natural factor in island evolution. River island evolution was also found to be affected by both runoff and oceanic tide. The difference in flow-field caused silting up in the Leigongdao Island and the head of Taipingzhou Island, and a serious reduction in the middle and tail of Taipingzhou Island. The method used in this paper has good applicability to river islands in other rivers around the world.


2018 ◽  
Author(s):  
Jun Liu ◽  
Jeramy Dedrick ◽  
Lynn M. Russell ◽  
Gunnar I. Senum ◽  
Janek Uin ◽  
...  

Abstract. From November 2015 to December 2016, the ARM West Antarctic Radiation Experiment (AWARE) measured submicron aerosol properties near McMurdo Station at the southern tip of the Ross Island. Submicron organic mass (OM), particle number, and cloud condensation nuclei concentrations were higher in summer than other seasons. The measurements included a range of compositions and concentrations that likely reflected both local anthropogenic emissions and natural background sources. We isolated the natural organic components by separating a natural factor and a local combustion factor. The natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that included marine sea spray and seabird emissions contributed 56 % of OM in the austral summer but only 3 % in the austral winter. The natural OM had high hydroxyl group fraction (55 %), 6 % alkane, and 6 % amine group mass, consistent with marine organic composition. In addition, the Fourier transform infrared (FTIR) spectra showed the natural sources of organic aerosol were characterized by amide group absorption, which may be from seabird populations. Carboxylic acid group contributions from natural sources were correlated to incoming solar radiation, indicating that some OM formed by secondary pathways.


Sign in / Sign up

Export Citation Format

Share Document