scholarly journals Antarctic geothermal heat flow model: Aq1.

Author(s):  
Tobias Stål ◽  
Anya M. Reading ◽  
Jacqueline A. Halpin ◽  
Joanne M. Whittaker
2021 ◽  
Author(s):  
William Colgan ◽  
Agnes Wansing ◽  
Kenneth Mankoff ◽  
Mareen Lösing ◽  
John Hopper ◽  
...  

Abstract. We compile, analyse and map all available geothermal heat flow measurements collected in and around Greenland into a new database of 419 sites and generate an accompanying spatial map. This database includes 290 sites previously reported by the International Heat Flow Commission (IHFC), for which we now standardize measurement and metadata quality. This database also includes 129 new sites, which have not been previously reported by the IHFC. These new sites consist of 88 offshore measurements and 41 onshore measurements, of which 24 are subglacial. We employ machine learning to synthesize these in situ measurements into a gridded geothermal heat flow model that is consistent across both continental and marine areas in and around Greenland. This model has a native horizontal resolution of 55 km. In comparison to five existing Greenland geothermal heat flow models, our model has the lowest mean geothermal heat flow for Greenland onshore areas (44 mW m–2). Our model’s most distinctive spatial feature is pronounced low geothermal heat flow (< 40 mW m–2) across the North Atlantic Craton of southern Greenland. Crucially, our model does not show an area of elevated heat flow that might be interpreted as remnant from the Icelandic Plume track. Finally, we discuss the substantial influence of paleoclimatic and other corrections on geothermal heat flow measurements in Greenland. The in-situ measurement database and gridded heat flow model, as well as other supporting materials, are freely available from the GEUS DataVerse (https://doi.org/10.22008/FK2/F9P03L; Colgan and Wansing, 2021).


2010 ◽  
Vol 108 (1) ◽  
pp. 013508 ◽  
Author(s):  
Taeseok Kim ◽  
Manoj R. Pillai ◽  
Michael J. Aziz ◽  
Michael A. Scarpulla ◽  
Oscar D. Dubon ◽  
...  

1981 ◽  
Vol 51 (2) ◽  
pp. 327-334 ◽  
Author(s):  
S. D. Morrison

The increased food intake of rats exposed to cold is the result of increased intake due to cold (cold-specific compartment; A) and decreased intake due to simultaneously decreased body weight (weight-specific compartment; B). The two compartments are evaluated at 5, 13, and 17 degrees C. B is evaluated as the food intake of theoretical, isogravimetric control (identical to cold-exposed rats with respect to body weight and rate of change of body weight and identical to nonexposed rats in all other respects) that takes into account both the change in energy expenditure due to decreased body weight and the energy yield from tissue catabolism represented by change of body weight. A is the observed food intake minus B. A theoretical heat-flow model, in which expected changes in heat flow during cold exposure drive food intake to maintain or restore preexposure body weight status, corroborated the partition derived from experimental data. However, both the experimental results and the heat-flow model imply that the energy density of body weight change is negatively correlated with rate of body weight change. The energy density of weight change is high with high rates of weight loss and low with high rats of weight gain.


Author(s):  
Abdel-Wahed Assar ◽  
Nahed El-Mahallawy ◽  
Mohamed Taha ◽  
Ahmed El-Sabbagh
Keyword(s):  

2019 ◽  
Vol 4 (3) ◽  
pp. 125-127
Author(s):  
Frederick Mayer ◽  
John Reitz

Sign in / Sign up

Export Citation Format

Share Document