scholarly journals Prototethyan accretionary orogenesis along the East Gondwana periphery: New insights from the early Paleozoic igneous and sedimentary rocks in the Sibumasu

Author(s):  
Yuejun Wang ◽  
Xin Qian ◽  
Peter A. Cawood ◽  
Yuzhi Zhang ◽  
Yang Wang ◽  
...  
2012 ◽  
Vol 524-527 ◽  
pp. 42-48
Author(s):  
Fu Sheng Guo ◽  
Zhao Bin Yan ◽  
Liu Qin Chen

The two early Cambrian seismic events could be found from sedimentary rocks at Peilingjiao section of Kaihua County, Baishi and Fangcun sections of Changshan County in western Zhejiang, except for Jiangshan area. The seismic event at Baishi outcrop can be correlated to the second seismic event at Peilingjiao section. Taking Fangcun as epicenter of the second seismic event, the magnitude of paleoseism in western Zhejiang is about 7~7.6. According to investigation on regional distribution of seismic events, the two seismic activities should be regulated by large Kaihua-Chun’an fault, but unrelated with Jiangshan-Shaoxing fault or Changshan-Xiaoshan fault. However, the formation time of Kaihua-Chun’an fault has not yet been determinate. Based on controlling on Silurian, the possible formation age was inferred to early Paleozoic. The distribution characteristics of seismites indicate that the Kaihua-Chun’an fault was already being active during early Cambrian and seismic activities may be response to Sinian tectonic events in western Zhejiang. By the way of analysis on paleoseismic rhythm, the time interval of the two seismic events in western Zhejiang is less than 5.0 Ma, which may be the result of early frequent activities of Kaihua-Chun’an fault.


1965 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Grover E. Murray

Accumulated evidence indicates that (1) the major portion of chemical and organic evolution occurred during the 3-5 x 109 years of the earth's history preceding the Paleozoic; (2) the basic elements constituting petroleum existed in the early phases of the earth's history; (3) unmetamorphosed Precambrian and Cambrian lithic types are similar to younger ones; and (4) the population of the later Precambrian and early Paleozoic seas was relatively rich and varied, though hard skeletal parts are notably absent in the Precambrian rocks and, in all probability, were not widely developed.As petroleum is now generally considered of organic origin and is a widely disseminated and integral part of most sedimentary rocks, unmetamorphosed Precambrian and Cambrian strata should be prospective for petroleum. Discoveries of large reserves of oil in the Cambrian in parts of North Africa, Russia and the United States support this asserted prospectivity. Shows of indigenous gas in the late Proterozoic of the Amadeus Basin, Northern Territory, Australia, indicate that unmetamorphosed Precambrian strata may also yield commercial amounts of hydrocarbons.


2021 ◽  
Author(s):  
Qian Liu ◽  
Toshiaki Tsunogae ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao ◽  
...  

<p>Amalgamation of northern Gondwana involves a wealth of present-day East Asian blocks (e.g., South China, North China, Alxa, Tarim, Indochina, Qiangtang, Sibumasu, Lhasa, etc.) due to consumption and closure of the Proto-Tethys Ocean. Locating the Tarim craton during assembly of northern Gondwana remains enigmatic, with different models separating Tarim from Gondwana by a paleoceanic domain throughout the Paleozoic, advocating a long-term Tarim-Australia linkage in the Neoproterozoic to the early Paleozoic, or suggesting a Tarim-Arabia connection in the early Paleozoic.</p><p>This study carried out field-based zircon U-Pb dating and Hf isotopic analyses for early Paleozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. New dating results revealed that the early Paleozoic sedimentary rocks were deposited from ca. 494 to 449 Ma. Provenance tracing indicates the ca. 494-477 Ma sedimentary rocks were primarily sourced from the local Altyn Tagh orogen to the south of the North Altyn Ocean (one branch of the Proto-Tethys Ocean between southeastern Tarim and northern Gondwana). In contrast, the ca. 465-449 Ma sedimentary rocks have remarkably increasing ca. 840-780 Ma, 2.0-1.7 Ga, and 2.7-2.4 Ga detrital zircons, indicating an augmented supply of detritus from the Tarim craton to the north of the North Altyn Ocean. Such a significant provenance shift between ca. 477 and 465 Ma marks the timing of the final closure of the North Altyn Ocean. Combined with the timing of the final closure of other branches of the Proto-Tethys Ocean, the entire Proto-Tethys Ocean might have been progressively closed at ca. 500-420 Ma, resulting in the connection of most East Asian blocks with northern Gondwana. Based on detrital zircon U-Pb-Hf isotopic comparison, Tarim most likely shared a North Indian affinity with many East Asian blocks (such as North Qilian, North Qinling, South China, Indochina, South Qiangtang, etc.). This new finding argues against an Australian or Arabian affinity for the Tarim craton.</p><p>This work was financially supported by National Natural Science Foundation of China Projects (grants 41730213, 42072264, 41902229, 41972237, and 41888101), Hong Kong Research Grants Council General Research Fund (grant 17307918), and Grant-in-Aids for Scientific Research from Japan Society for the Promotion of Science (JSPS) to Prof. Toshiaki Tsunogae (No. 18H01300) and to Dr. Qian Liu (No. 19F19020). JSPS fellowship is also much appreciated.</p>


Author(s):  
Bingshuang Zhao ◽  
Xiaoping Long ◽  
Jin Luo ◽  
Yunpeng Dong ◽  
Caiyun Lan ◽  
...  

The crustal evolution of the Yangtze block and its tectonic affinity to other continents of Rodinia and subsequent Gondwana have not been well constrained. Here, we present new U-Pb ages and Hf isotopes of detrital zircons from the late Neoproterozoic to early Paleozoic sedimentary rocks in the northwestern margin of the Yangtze block to provide critical constraints on their provenance and tectonic settings. The detrital zircons of two late Neoproterozoic samples have a small range of ages (0.87−0.67 Ga) with a dominant age peak at 0.73 Ga, which were likely derived from the Hannan-Micangshan arc in the northwestern margin of the Yangtze block. In addition, the cumulative distribution curves from the difference between the depositional age and the crystalline age (CA−DA) together with the mostly positive εHf(t) values of these zircon crystals (−6.8 to +10.7, ∼90% zircon grains with εHf[t] > 0) suggest these samples were deposited in a convergent setting during the late Neoproterozoic. In contrast, the Cambrian−Silurian sediments share a similar detrital zircon age spectrum that is dominated by Grenvillian ages (1.11−0.72 Ga), with minor late Paleoproterozoic (ca. 2.31−1.71 Ga), Mesoarchean to Neoarchean (3.16−2.69 Ga), and latest Archean to early Paleoproterozoic (2.57−2.38 Ga) populations, suggesting a significant change in the sedimentary provenance and tectonic setting from a convergent setting after the breakup of Rodinia to an extensional setting during the assembly of Gondwana. However, the presence of abundant Grenvillian and Neoarchean ages, along with their moderately to highly rounded shapes, indicates a possible sedimentary provenance from exotic continental terrane(s). Considering the potential source areas around the Yangtze block when it was a part of Rodinia or Gondwana, we suggest that the source of these early Paleozoic sediments had typical Gondwana affinities, such as the Himalaya, north India, and Tarim, which is also supported by their stratigraphic similarity, newly published paleomagnetic data, and tectono-thermal events in the northern fragments of Gondwana. This implies that after prolonged subduction in the Neoproterozoic, the northwestern margin of the Yangtze block began to be incorporated into the assembly of Gondwana and then accept sediments from the northern margin of Gondwanaland in a passive continental margin setting.


Geosphere ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 367-394 ◽  
Author(s):  
Julie A. Dumoulin ◽  
James V. Jones ◽  
Dwight C. Bradley ◽  
Alison B. Till ◽  
Stephen E. Box ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document