scholarly journals Interannual Variability of the South Atlantic Ocean Heat Content in a High‐Resolution Versus a Low‐Resolution General Circulation Model

2020 ◽  
Vol 47 (23) ◽  
Author(s):  
Alexandra Gronholz ◽  
Shenfu Dong ◽  
Hosmay Lopez ◽  
Sang‐Ki Lee ◽  
Gustavo Goni ◽  
...  
2001 ◽  
Vol 32 ◽  
pp. 125-126
Author(s):  
C. TIMMRECK ◽  
M. SCHULZ ◽  
Y. BALKANSKI ◽  
J. FEICHTER

2017 ◽  
Vol 50 (7-8) ◽  
pp. 2537-2552 ◽  
Author(s):  
Mark S. Williamson ◽  
Mat Collins ◽  
Sybren S. Drijfhout ◽  
Ron Kahana ◽  
Jennifer V. Mecking ◽  
...  

2018 ◽  
Vol 48 (5) ◽  
pp. 1139-1150 ◽  
Author(s):  
Lachlan Stoney ◽  
Kevin J. E. Walsh ◽  
Steven Thomas ◽  
Paul Spence ◽  
Alexander V. Babanin

Abstract A parameterization of turbulent mixing from unbroken surface waves is included in a 16-yr simulation within a high-resolution ocean circulation model (MOM5). This “surface wave mixing” (SWM) derives from the wave orbital motion and is parameterized as an additional term in a k-epsilon model. We show that SWM leads to significant changes in sea surface temperatures but smaller changes in ocean heat content, and show the extent to which these changes can reduce pre-existing model biases with respect to observed data. Specifically, SWM leads to a widespread improvement in sea surface temperature in both hemispheres in summer and winter, while for ocean heat content the improvements are less clear. In addition, we show that introducing SWM can lead to an accumulation of wave-induced ocean heat content between years. While it has been well established that secular positive trends exist in global wave heights, we find that such trends are relatively unimportant in driving the accumulation of wave-induced ocean heat content. Rather, in response to the new source of mixing, the simulated ocean climate evolves toward a new equilibrium with greater total ocean heat content.


1970 ◽  
Vol 9 (1-2) ◽  
pp. 143-154 ◽  
Author(s):  
MA Rouf ◽  
MK Uddin ◽  
SK Debsarma ◽  
M Mizanur Rahman

The past, present and future climatic pattern (temperature and rainfall) of northwestern and southwestern part of Bangladesh was assessed based on the High Resolution Atmospheric-Ocean General Circulation Model (AOGCM) using the present rainfall and temperature data of the Bangladesh Meteorological Department (BMD). Climatology in Bangladesh is derived from 20 km mesh MRI-AGCM (Atmospheric General Circulation Model) calibrated with reference to the observed data for the period of 1979-2006. Then, projections for rainfall and temperature are made for near future (2015-2034) and future (2075-99). Two disaster prone areas (i) northwestern part (Shapahar & Porsha) and (ii) southwestern part (Kalapara & Amtoli) were selected as the study areas. AOGCM model was run for Bangladesh and also for study areas separately. The present mean temperature for Bangladesh was found to rise from the past, rises slightly, but in near future and future the rate of mean temperature rise is projected to be much more than the present rate (increase up to 4.34 °C/100 years), the rate is projected to be 5.39 °C/100 years in case of Shapahar and Porsha a while 4.37 °C/100 years in case of Kalapara and Amtoli. The present, near future and future average rainfall of Bangladesh appeared to fluctuate, but have shown a decreasing trend (decreases up to 1.96 mm/100 years). The mean average rainfall of Shapahar and Porsha presently decreases very slowly (not significant), but in near future and future will decrease slowly (0.66mm/100 years). In case of Kalapara, the average rainfall appears to decrease presently, near future and future will decrease up to 3.62 mm/100 years. The average rainfall of Amtoli appears to decrease @ 1.92mm/100 years but in near future appears to increase slightly and again decrease @ 3.27mm/100years in future. Keywords: Atmosphere-Ocean General Circulation Model (AOGCM); climatology; simulation; temperature; rainfall DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9489 The Agriculturists 2011; 9(1&2): 143-154


Sign in / Sign up

Export Citation Format

Share Document