An Inclination Shallowing‐Corrected Early Triassic Paleomagnetic Pole for the North China Craton: Implication for the Mesozoic Geography of Proto‐Asia

2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Pan Zhao ◽  
Erwin Appel ◽  
Bei Xu
Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Yanpeng Wang ◽  
Wentao Yang ◽  
Shenyuan Peng ◽  
Shuaishuai Qi ◽  
Deshun Zheng

Provenance analysis of sediments provides important constraints on basin formation and orogenic processes. With the aim to define the sedimentary provenance and tectonic evolution of the southern margin of the North China Craton, this paper presents new detrital zircon U-Pb data from Early Triassic sediments in the Yiyang area. The results showed major peaks at 1848, 458, 425, and 268 Ma and subordinate peaks at ca. 2500, 872, and 957 Ma on age spectra from the Liujiagou Formation. The Heshanggou Formation exhibited a major age peak at 445 Ma and subordinate peaks at 755 and 947 Ma. Integrated with the analysis of sandstone detrital compositions, we suggest that the sources of the Liujiagou Formation were mainly a mixture of the southern margin of the North China Craton and the North Qinling Orogenic Belt, whereas the Heshanggou Formation was derived primarily from the North Qinling Orogenic Belt. Age comparisons of detrital zircon geochronology collected from different basins in the North China Craton indicated that the paleogeography of the North China Craton during the Early Triassic was strongly asymmetric, wherein the uplifted highland along the southern margin of the North China Craton was relatively lower than the northern margin. Meanwhile, the marked shift in source region from the Liujiagou to the Heshanggou formations provides a constraint regarding the conversion from denuded zone to deposited zone along the southern margin of the North China Craton in the Early Triassic, which controlled the evolution of the provenance and sedimentary system.


2018 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC), and to reconstruct the early Mesozoic tectono-paleogeography of the region, we combine LA–ICP–MS detrital zircon U–Pb dating, Hf isotopic data. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation comprise ~ 58 % Neoarchean to Paleoproterozoic and ~ 42 % Phanerozoic grains that were sourced from areas to the south and north of the basins within the NCC. This indicates that Early Triassic deposition was controlled primarily by southward subduction of the Paleo-Asian oceanic plate beneath the NCC, and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining ~ 12 % from the Xing'an–Mongol Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast, ~ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining ~ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Geology ◽  
2020 ◽  
Author(s):  
Hanqing Zhao ◽  
Shihong Zhang ◽  
Maoyan Zhu ◽  
Jikai Ding ◽  
Haiyan Li ◽  
...  

Redlichiid trilobite and small shelly fossils indicate strong ties of the North China craton (NCC) to Gondwana during the early Cambrian, while recent discoveries of the characteristic fossils of Laurentia in Wuliuan shales in the eastern NCC imply its possible connection with Laurentia during the middle Cambrian. Here we report a new paleomagnetic pole at 31.8°S, 140.4°E (radius of 95% confidence cone of paleomagnetic pole, A95, = 5.3°), obtained from the Wuliuan (ca. 505 Ma) Hsuchuang Formation, by averaging our new data and existing virtual geomagnetic poles acquired from different parts of the NCC. A positive regional tilt test and the presence of geomagnetic reversals demonstrate that the remanence was primary. The paleomagnetic data permit placing the NCC near 20°N between Laurentia and Australia at ca. 505 Ma, suggesting that the NCC may have played the role of biogeographic link between East Gondwana and Laurentia in the middle Cambrian. Low-latitudinal westward ocean currents may have facilitated faunal migrations from Laurentia to East Gondwanan blocks via the NCC as well as the newly formed tectono-paleogeographic archipelago, which likely further enhanced biological exchange in the late Cambrian.


Sign in / Sign up

Export Citation Format

Share Document