scholarly journals Cross‐scale seismic anisotropy analysis in metamorphic rocks from the COSC‐1 borehole in the Scandinavian Caledonides

Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Alba Zappone ◽  
Luiz F. G. Morales ◽  
Anja M. Schleicher ◽  
...  
2020 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Christian Berndt ◽  
Alba Zappone ◽  
...  

<p>Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can help to constrain the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. Differences in the core and downhole velocities are most likely the result of microcracks due to depressurization of the cores. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. To further constrain the effects of mineral composition, microstructure and deformation on the measured seismic anisotropy, we conducted additional microscopic investigations on selected core samples. These analyses using electron-based microscopy and X-ray powder diffractometry indicate that the anisotropy is strongest for mica schists followed by amphibole-rich units. This also emphasizes that seismic velocity and anisotropy are of complementary importance to better distinguish the present lithological units. Our results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.</p>


2005 ◽  
Vol 42 (4) ◽  
pp. 533-554 ◽  
Author(s):  
Pavlo Y Cholach ◽  
Joseph B Molyneux ◽  
Douglas R Schmitt

Laboratory measurements of compressional- and shear-wave velocities, and shear-wave splitting have been carried out on a set of upper greenschist – lower amphibolite facies of metasediments and metavolcanics and plutonic rocks from two ductile shear zones in the Flin Flon Belt (FFB) of the Trans-Hudson Orogen (THO). Selected metamorphic rocks vary in composition from felsic to mafic. Test sites with outcrops of sheared metamorphic rocks were correlated with a series of inclined seismic reflectors possibly extending from the midcrust and intersecting a well-mapped shear zone at the surface. Determination of the lithological and physical properties of highly deformed metamorphic rocks is essential for proper interpretation of the nature of observed seismic reflectors. To investigate the anisotropic properties of the rocks, compressional velocity was measured at confining pressure up to 300 MPa in three mutually orthogonal directions aligned with respect to visible textural features. In addition, on selected samples, shear-wave velocity was measured at two orthogonal polarizations for each of three propagation directions to determine shear-wave splitting. The seismic heterogeneity of hand specimens was also investigated by measuring P- and S-wave velocities on several cores cut in the same direction. Observed compressional-wave anisotropy varied from quasi-isotropic to 24%. Maximum observed shear-wave splitting reaches a value of 0.77 km/s at confining pressure of 300 MPa. The pressure invariance of observed P-wave anisotropy and shear-wave splitting indicates that intrinsic anisotropy due to the lattice-preferred orientation (LPO) of highly anisotropic minerals, such as mica and hornblende, is mainly responsible for the measured seismic anisotropy.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 607-626
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Alba Zappone ◽  
Jochem Kück ◽  
...  

Abstract. Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply eroded orogens like the Scandinavian Caledonides allow us to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications of a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can constrain the origin of this reflectivity. To this end, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. For some intervals of the COSC-1 borehole, the core and downhole velocities deviate by up to 2 km s−1. These differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. However, the core and downhole velocities of the intervals with mafic rocks are generally in close agreement. Seismic anisotropy measured in laboratory samples increases from about 5 % to 26 % at depth, correlating with a transition from gneissic to schistose foliation. Thus, metamorphic foliation has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.


2019 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Alba Zappone ◽  
Jochem Kück ◽  
...  

Abstract. Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data constrains the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. We suggest that differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere. In particular, they show that core log seismic integration via synthetic seismograms requires wireline logging data in any but mafic lithologies.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


Sign in / Sign up

Export Citation Format

Share Document