scholarly journals Upward‐doming zones of gas hydrate and free gas at the bases of gas chimneys, New Zealand’s Hikurangi margin

Author(s):  
G.J. Crutchley ◽  
J.J. Mountjoy ◽  
J.I.T. Hillman ◽  
F. Turco ◽  
S. Watson ◽  
...  
Keyword(s):  
Free Gas ◽  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Minghui Geng ◽  
Ruwei Zhang ◽  
Shengxiong Yang ◽  
Jun Guo ◽  
Zongheng Chen

The 3D seismic data acquired in the central Qiongdongnan Basin, northwestern South China Sea, reveal the presence of shallow gas hydrate, free gas, and focused fluid flow in the study area, which are indicated by multiple seismic anomalies, including bottom simulating reflectors, polarity reverses, pulldowns, minor faults, and gas chimneys intensively emplaced within the shallow strata. A new cold seep is also discovered at approximately 1520 m water depths with an ~40 m wide crater in the west part of the study area. Water column imaging, seafloor observation, and sampling using the remotely operated vehicle “Haima” demonstrate ongoing gas seepages and shallow gas hydrates at this site. Thermogenic gas in the study area migrates from the deep reservoir through the gas hydrate stability zone along deep faults and gas chimneys, forms shallow gas hydrate and free gas, and sustains localized gas seepage within this cold seep. The results provide insight into the relationship between shallow gas hydrate accumulation and deep hydrocarbon generation and migration and simultaneously have important implications for hydrocarbon explorations in the Qiongdongnan Basin, northwestern South China Sea.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. O55-O63 ◽  
Author(s):  
Martin Nyamapfumba ◽  
George A. McMechan

Evidence of gas hydrate and free gas occurrences in a 3D seismic volume from the West-Central Coastal Province of the Congo Fan, offshore Angola, illustrates all the components of a complete petroleum system. Analysis and interpretation are based on the information in attributes calculated from three 3D time-migrated common-angle seismic volumes; the attributes include seismic amplitude, spectral components, dip magnitude, amplitude variation with angle, and instantaneous frequency. The source is organic-rich muds associated with late Cretaceous to early Tertiary channels, the migration paths are along growth faults, and the traps are partly defined by the gas hydrate stability zone (for the gas hydrate), partly by the bottom-simulating reflector (for the subhydrate free gas), and partly by faults (for both). The spatial distribution of free gas is further supported by the associated seismic bright spots, and also by the attenuation of high frequencies of P-waves that traverse the gas-saturated zone. Locally higher temperatures, associated with upward fluid circulation along fault zones, facilitate gas transmission through the gas hydrate and forms gas chimneys that extend to the sea floor.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. D169-D179 ◽  
Author(s):  
Zijian Zhang ◽  
De-hua Han ◽  
Daniel R. McConnell

Hydrate-bearing sands and shallow nodular hydrate are potential energy resources and geohazards, and they both need to be better understood and identified. Therefore, it is useful to develop methodologies for modeling and simulating elastic constants of these hydrate-bearing sediments. A gas-hydrate rock-physics model based on the effective medium theory was successfully applied to dry rock, water-saturated rock, and hydrate-bearing rock. The model was used to investigate the seismic interpretation capability of hydrate-bearing sediments in the Gulf of Mexico by computing elastic constants, also known as seismic attributes, in terms of seismic interpretation, including the normal incident reflectivity (NI), Poisson’s ratio (PR), P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density. The study of the model was concerned with the formation of gas hydrate, and, therefore, hydrate-bearing sediments were divided into hydrate-bearing sands, hydrate-bearing sands with free gas in the pore space, and shallow nodular hydrate. Although relations of hydrate saturation versus [Formula: see text] and [Formula: see text] are different between structures I and II gas hydrates, highly concentrated hydrate-bearing sands may be interpreted on poststack seismic amplitude sections because of the high NI present. The computations of elastic constant implied that hydrate-bearing sands with free gas could be detected with the crossplot of NI and PR from prestack amplitude analysis, and density may be a good hydrate indicator for shallow nodular hydrate, if it can be accurately estimated by seismic methods.


2005 ◽  
Vol 53 (6) ◽  
pp. 803-810 ◽  
Author(s):  
José M. Carcione ◽  
Davide Gei ◽  
Giuliana Rossi ◽  
Gianni Madrussani

Sign in / Sign up

Export Citation Format

Share Document