Late Eocene Record of Hydrology and Temperature From Prydz Bay, East Antarctica

2021 ◽  
Vol 36 (4) ◽  
Author(s):  
Emily J. Tibbett ◽  
Howie D. Scher ◽  
Sophie Warny ◽  
Jessica E. Tierney ◽  
Sandra Passchier ◽  
...  
2009 ◽  
Vol 22 (2) ◽  
pp. 57 ◽  
Author(s):  
E. M. Truswell ◽  
M. K. Macphail

Diverse pollen and spore assemblages, spanning the Late Eocene preglacial–glacial transition, have been recovered from Ocean Drilling Program cores from Prydz Bay, East Antarctica. These microfloras are mostly in situ and provide an unparalleled record of terrestrial plant communities growing in Antarctica during the earliest stages of ice-cap formation. The evidence provides a basis for assessing the phytogeographic relationships of the Antarctic floras with other high-latitude floras in the southern hemisphere, including possible migration routes for some taxa. Preliminary studies (Macphail and Truswell 2004a) suggested the Late Eocene vegetation at Prydz Bay was floristically impoverished rainforest scrub, similar to Nothofagus–gymnosperm communities found near the climatic treeline in Patagonia and Tasmania. Re-evaluation of the microfloras indicates the diversity of shrubs, especially Proteaceae, was underestimated and the Late Eocene vegetation was a mosaic of dwarfed (krumholtz) trees, scleromorphic shrubs and wetland herbs, analogous to the taiga found in the transition zone between the boreal conifer forest and tundra biomes across the Arctic Circle. Microfloras similar to although much less diverse than the Prydz Bay assemblages occur in coreholes from the Ross Sea region on the opposite side of Antarctica. Interpretation of the latter is complicated by reworking and low yields but the combined evidence points to the collapse of taller woody ecosystems during the Eocene–Oligocene transition and their replacement by tundra-like or fell-field vegetation during the Oligocene and Neogene. This temperature-forced regression seems to have been broadly synchronous across the continent. The high-palaeolatitude location (~70°S) means that the Prydz Bay flora was adapted to several months of winter darkness and short-summer growing seasons. The nearest living relatives of identifiable woody taxa suggest year-round high humidity, with an annual precipitation between ~1200 and 1500 mm. Palaeotemperatures are more difficult to quantify although the inferred humid microtherm climate is consistent with mean annual temperatures less than 12°C and freezing winters.


Author(s):  
Steven K. Spreitzer ◽  
Jesse B. Walters ◽  
Alicia Cruz‐Uribe ◽  
Michael L. Williams ◽  
Martin G. Yates ◽  
...  

2016 ◽  
Vol 219 ◽  
pp. 528-536 ◽  
Author(s):  
Rui Xue ◽  
Ling Chen ◽  
Zhibo Lu ◽  
Juan Wang ◽  
Haizhen Yang ◽  
...  

2020 ◽  
Author(s):  
Chengyan Liu ◽  
Zhaomin Wang ◽  
Robin Robertson ◽  
Chen Cheng ◽  
Xi Liang ◽  
...  

The Holocene ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 246-257 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Koen Sabbe ◽  
Koenraad Vanhoutte ◽  
Wim Vyverman

2013 ◽  
Vol 155 ◽  
pp. 135-147 ◽  
Author(s):  
Nicholas P. Roden ◽  
Elizabeth H. Shadwick ◽  
Bronte Tilbrook ◽  
Thomas W. Trull

Author(s):  
Lei Fu ◽  
Jingxue Guo ◽  
Junlun Li ◽  
Bao Deng ◽  
Guofeng Liu ◽  
...  

Abstract Comprehensive geophysical surveys including magnetotelluric, seismic, and aerial gravity–magnetic surveys are essential for understanding the history of Antarctic tectonics. The ice sheet and uppermost structure derived from those geophysical methods are relatively low resolution. Although ice-penetrating radar can provide high-resolution reflectivity images of the ice sheet, it cannot provide constraints on subice physical properties, which are important for geological understanding of the Antarctic continent. To obtain high-resolution images of the ice sheet and uppermost crustal structure beneath the Larsemann Hills, Prydz Bay, East Antarctica, we conduct an ambient noise seismic experiment with 100 short-period seismometers spaced at 0.2 km intervals. Continuous seismic waveforms are recorded for one month at a 2 ms sampling rate. Empirical Green’s functions are extracted by cross correlating the seismic waveform of one station with that of another station, and dispersion curves are extracted using a new phase-shift method. A high-resolution shear-velocity model is derived by inverting the dispersion curves. Furthermore, body waves are enhanced using a set of processing techniques commonly used in seismic exploration. The stacked body-wave image clearly shows a geological structure similar to that revealed by the shear-wave velocity model. This study, which is the first of its kind in Antarctica, possibly reveals a near-vertical intrusive rock covered by an ice sheet with a horizontal extent of 4 km. Our results help to improve the understanding of the subice environment and geological evolution in the Larsemann Hills, Prydz Bay, East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document