Mechanisms of Fast Walker Circulation Responses to CO 2 Forcing

Author(s):  
Kezhou Lu ◽  
Jie He ◽  
Boniface Fosu ◽  
Maria Rugenstein
Keyword(s):  
2021 ◽  
pp. 1
Author(s):  
Shasha Shang ◽  
Gaofeng Zhu ◽  
Jianhui Wei ◽  
Yan Li ◽  
Kun Zhang ◽  
...  

AbstractPrecipitation in the Three-River Headwater (TRH) region has undergone significant changes as a result of global warming, which can affect water resources in downstream regions of Asia. However, the underlying mechanisms of the precipitation variability during the cold season (October to April), are still not fully understood. In this study, the daily China gridded precipitation product of CN05.1 as well as the NCEP-NCAR reanalysis are used to investigate the characteristics of the cold season precipitation variability over the TRH region and associated atmospheric mechanisms. The cold season precipitation shows an increasing trend (5.5 mm decade-1) from 1961 to 2014, with a dry-to-wet shift in around the late 1980s. The results indicate that the increased precipitation is associated with the enhanced easterly anomalies over the Tibetan Plateau (TP) and enhanced southeasterly water vapor transport. The enhanced Walker circulations, caused by the gradients of sea surface temperature between the equatorial central-eastern Pacific and Indo-western Pacific in tropical oceans, resulted in strengthened easterly anomalies over the TP and the westward expansion of the anticyclone in the western North Pacific. Meanwhile, the changed Walker circulation is accompanied by a strengthened local Hadley circulation which leads to enhanced meridional water vapor transport from tropical oceans and the South China Sea toward the TRH region. Furthermore, the strengthened East Asia Subtropical Westerly jet may contribute to the enhanced divergence at upper level and anomalous ascending motion above the TRH region leading to more precipitation.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2019 ◽  
Vol 507 ◽  
pp. 85-93
Author(s):  
Zhongfang Liu ◽  
Zhimin Jian ◽  
Christopher J. Poulsen ◽  
Liang Zhao

1996 ◽  
Vol 101 (D1) ◽  
pp. 1961-1974 ◽  
Author(s):  
Reginald E. Newell ◽  
Yong Zhu ◽  
Edward V. Browell ◽  
William G. Read ◽  
Joe W. Waters

2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


2021 ◽  
Author(s):  
Minkang Du ◽  
Kaiming Huang ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
Yun Gong ◽  
...  

Abstract. Using radiosonde observations at five stations in the tropical western Pacific and reanalysis data for 15 years from 2005 to 2019, we report an extremely negative anomaly in atmospheric water vapor during the super El Niño winter of 2015/16, and compare the anomaly with that in the other three El Niño winters. Strong specific humidity anomaly is concentrated below 8 km of the troposphere with a peak at 2.5–3.5 km, and column integrated water vapor mass anomaly over the five radiosonde sites has a large negative correlation coefficient of −0.63 with oceanic Niño3.4 index, but with a lag of about 2–3 months. In general, the tropical circulation anomaly in the El Niño winter is characterized by divergence (convergence) in the lower troposphere over the tropical western (eastern) Pacific, thus the water vapor decreases over the tropical western Pacific as upward motion is suppressed. The variability of the Hadley circulation is quite small and has little influence on the observed water vapor anomaly. The anomaly of the Walker circulation makes a considerable contribution to the total anomaly in all the four El Niño winters, especially in the 2006/07 and 2015/16 eastern-Pacific (EP) El Niño events. The monsoon circulation shows a remarkable change from one to the other event, and its anomaly is large in the 2009/10 and 2018/19 central-Pacific (CP) El Niño winters and small in the two EP El Niño winters. The observed water vapor anomaly is caused mainly by the Walker circulation anomaly in the supper EP event of 2015/16 but by the monsoon circulation anomaly in the strong CP event of 2009/10. Owing to the anomalous decrease in upward transport of water vapor during the El Niño winter, less cloud amount and more outgoing longwave radiation over the five stations are clearly presented in satellite observation.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yang-Yi Sun

AbstractBoth solar activities from above and perturbations of Earth’s surface and troposphere from below disturb ionospheric structure and its dynamics. Numerous ionospheric phenomena remain unexplained due to the complicated nature of the solar–terrestrial environment. We do appreciate the ground- and space-based Global Navigation Satellite System (GNSS) techniques being around and providing global observations with high resolutions to help us to resolve unexplained phenomena. This paper summarizes recent studies of the effect of solar (geomagnetic storm and total solar eclipse), tropospheric (typhoon, walker circulation, and El Niño-Southern Oscillation), and earthquake/tsunami activities (2010 Chile, 2011 Tohoku, and 2015 Nepal earthquakes) on the ionosphere utilizing the global ground- and space-based GNSS observations.


2018 ◽  
Author(s):  
Charan Teja Tejavath ◽  
Karumuri Ashok ◽  
Supriyo Chakraborty ◽  
Rengaswamy Ramesh

Abstract. Using seven model simulations from the PMIP3, we study the mean summer (June–September) climate and its variability in India during the Last Millennium (LM; CE 850–1849) with emphasis on the Medieval Warm Period (MWP) and Little Ice Age (LIA), after validation of the simulated current day climate and trends. We find that the above (below) LM-mean summer global temperatures during the MWP (LIA) are associated with relatively higher (lower) number of concurrent El Niños as compared to La Niñas. The models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA). This is notwithstanding a strong simulated negative correlation between the timeseries of NINO3.4 index and that of the area-averaged ISMR, Interestingly, the percentage of strong El Niños (La Niñas) causing negative (positive) ISMR anomalies is higher in the LIA (MWP), a non-linearity that apparently is important for causing higher ISMR in the MWP. Distribution of simulated boreal summer velocity potential at 850 hPa during MWP in models, in general, shows a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, suggesting a westward shift in the Walker circulation as compared to the simulations for LM as well as and a majority of historical simulations, and current day observed signal. The anomalous divergence centre in the west also extends into the equatorial eastern Indian Ocean, resulting in an anomalous convergence zone over India and therefore excess rainfall during the MWP as compared to the LM; the results are qualitative, given the inter-model spread.


Sign in / Sign up

Export Citation Format

Share Document