scholarly journals Dairy Methane Emissions in California’s San Joaquin Valley Inferred Using Ground‐based Remote Sensing Field Observations in the Summer and Winter

Author(s):  
Sajjan Heerah ◽  
Isis Frausto‐Vicencio ◽  
Seongeun Jeong ◽  
Alison R. Marklein ◽  
Yifan Ding ◽  
...  
EDIS ◽  
2007 ◽  
Vol 2007 (17) ◽  
Author(s):  
Joaquin Casanova ◽  
Fei Yan ◽  
Mi-young Jang ◽  
Juan Fernandez ◽  
Jasmeet Judge ◽  
...  

Circular 1514, a 47-page illustrated report by Joaquin Casanova, Fei Yan, Mi-young Jang, Juan Fernandez, Jasmeet Judge, Clint Slatton, Kai-Jen Calvin Tien, Tzu-yun Lin, Orlando Lanni, and Larry Miller, presents the results of experiments using microwave remote sensing to determine root-zone soil moisture at UF/IFAS PSREU. Published by the UF Department of Agricultural and Biological Engineering, May 2007. CIR1514/AE407: Field Observations During the Fifth Microwave Water and Energy Balance Experiment: from March 9 through May 26, 2006 (ufl.edu)


2013 ◽  
Vol 13 (10) ◽  
pp. 28225-28278 ◽  
Author(s):  
D. R. Gentner ◽  
T. B. Ford ◽  
A. Guha ◽  
K. Boulanger ◽  
J. Brioude ◽  
...  

Abstract. Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with negligible coincident methane emissions Aircraft observations of emission hotspots from operations at oil wells and dairies are consistent with the statistical source footprint determined via transport modeling and ground-based data. At Bakersfield, petroleum and dairy operations each comprised 22–23% of anthropogenic non-methane organic carbon and were each responsible for ~12% of potential precursors to ozone, but their direct impacts as potential SOA precursors were estimated to be minor. A comparison with the California Air Resources Board emission inventory supports the current relative emission rates of reactive organic gases from these sources in the region.


Author(s):  
Stefanie Herrmann ◽  
Abdoul Aziz Diouf ◽  
Ibrahima Sall

Land degradation monitoring and assessment in the Sahel zone takes advantage of and relies substantially on temporal trends of remote sensing-based vegetation indices, which are proxies for the bioproductivity of the land. However, prior studies have shown that negative or positive trends in bioproductivity are not necessarily associated with degradation or improvement of land condition. We argue that remote sensing-based indices, while having contributed much to dismantling an outdated desertification narrative, are themselves falling short of capturing the whole picture and need to be accompanied by field observations that are relevant to local land users. We used the participatory photo elicitation method in three sites in order to elicit local pastoralists’ perspectives on land degradation and identify the indicators that they use to characterize pasture quality, while empowering them to lead the discussion. The discussion revealed indicators far beyond bioproductivity, including livestock performance as well as composition and quality of the herbaceous and woody vegetative cover, invasive species, soil quality and water availability. We found that the pastoralists’ interest, knowledge and field observations could potentially be harnessed using a crowd-sourcing approach in order to produce a geospatially explicit dataset of land degradation, which would be complementary to the remote sensing-based maps of trends in bioproductivity and could serve as a reference for the development of more targeted remote sensing-based indicators of land degradation


2017 ◽  
Vol 122 (6) ◽  
pp. 3686-3699 ◽  
Author(s):  
Yu Yan Cui ◽  
Jerome Brioude ◽  
Wayne M. Angevine ◽  
Jeff Peischl ◽  
Stuart A. McKeen ◽  
...  

1996 ◽  
Vol 101 (C8) ◽  
pp. 18213-18235 ◽  
Author(s):  
P. Wadhams ◽  
J. C. Comiso ◽  
E. Prussen ◽  
S. Wells ◽  
M. Brandon ◽  
...  

2020 ◽  
Vol 55 ◽  
pp. 101032 ◽  
Author(s):  
Irina Cârlan ◽  
Bogdan-Andrei Mihai ◽  
Constantin Nistor ◽  
André Große-Stoltenberg

2020 ◽  
Vol 149 ◽  
pp. 02009
Author(s):  
Maira Razakova ◽  
Alexandr Kuzmin ◽  
Igor Fedorov ◽  
Rustam Yergaliev ◽  
Zharas Ainakulov

The paper considers the issues of calculating the volume of the landslide from remote sensing data. The main methods of obtaining information during research are field observations. The most important results of field studies are quantitative estimates, such as the volume of the embankment resulting from a landslide, morphometric indicators, etc. The study of a remote and remote object was carried out by remote methods using aerial photographs in the Ile Alatau foothills at 1,600 meters above sea level. The obtained materials from the mudflow survey will be useful in developing solutions to mitigate the effects of disasters and in the design of measures for engineering protection from landslides.


Author(s):  
Nuri Trigo Boix ◽  
Aurora Chimal Hernandez ◽  
Gerrit W. Heil ◽  
Roland Bobbink ◽  
Betty Verduyn

Sign in / Sign up

Export Citation Format

Share Document