Sub-bend scale flow–sediment interaction of meander bends — A combined approach of field observations, close-range remote sensing and computational modelling

Geomorphology ◽  
2015 ◽  
Vol 238 ◽  
pp. 119-134 ◽  
Author(s):  
Elina Kasvi ◽  
Matti Vaaja ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
Anttoni Jaakkola ◽  
...  
EDIS ◽  
2007 ◽  
Vol 2007 (17) ◽  
Author(s):  
Joaquin Casanova ◽  
Fei Yan ◽  
Mi-young Jang ◽  
Juan Fernandez ◽  
Jasmeet Judge ◽  
...  

Circular 1514, a 47-page illustrated report by Joaquin Casanova, Fei Yan, Mi-young Jang, Juan Fernandez, Jasmeet Judge, Clint Slatton, Kai-Jen Calvin Tien, Tzu-yun Lin, Orlando Lanni, and Larry Miller, presents the results of experiments using microwave remote sensing to determine root-zone soil moisture at UF/IFAS PSREU. Published by the UF Department of Agricultural and Biological Engineering, May 2007. CIR1514/AE407: Field Observations During the Fifth Microwave Water and Energy Balance Experiment: from March 9 through May 26, 2006 (ufl.edu)


2022 ◽  
Vol 14 (2) ◽  
pp. 370
Author(s):  
Cameron Proctor ◽  
Cedelle Pereira ◽  
Tian Jin ◽  
Gloria Lim ◽  
Yuhong He

Efforts to monitor terrestrial decomposition dynamics at broad spatial scales are hampered by the lack of a cost-effective and scalable means to track the decomposition process. Recent advances in remote sensing have enabled the simulation of litter spectra throughout decomposition for grasses in general, yet unique decomposition pathways are hypothesized to create subtly different litter spectral signatures with unique ecosystem functional significance. The objectives of this study were to improve spectra–decomposition linkages and thereby enable the more comprehensive monitoring of ecosystem processes such as nutrient and carbon cycles. Using close-range hyperspectral imaging, litter spectra and multiple decomposition metrics were concurrently monitored in four classes of naturally decayed litter under four decomposition treatments. The first principal component accounted for approximately 94% of spectral variation in the close-range imagery and was attributed to the progression of decomposition. Decomposition-induced spectral changes were moderately correlated with the leaf carbon to nitrogen ratio (R2 = 0.52) and sodium hydroxide extractables (R2 = 0.45) but had no correlation with carbon dioxide flux. Temperature and humidity strongly influenced the decomposition process but did not influence spectral variability or the patterns of surface decomposition. The outcome of the study is that litter spectra are linked to important metrics of decomposition and thus remote sensing could be utilized to assess decomposition dynamics and the implications for nutrient recycling at broad spatial scales. A secondary study outcome is the need to resolve methodological challenges related to inducing unique decomposition pathways in a lab environment. Improving decomposition treatments that mimic real-world conditions of temperature, humidity, insolation, and the decomposer community will enable an improved understanding of the impacts of climatic change, which are expected to strongly affect microbially mediated decomposition.


Author(s):  
Stefanie Herrmann ◽  
Abdoul Aziz Diouf ◽  
Ibrahima Sall

Land degradation monitoring and assessment in the Sahel zone takes advantage of and relies substantially on temporal trends of remote sensing-based vegetation indices, which are proxies for the bioproductivity of the land. However, prior studies have shown that negative or positive trends in bioproductivity are not necessarily associated with degradation or improvement of land condition. We argue that remote sensing-based indices, while having contributed much to dismantling an outdated desertification narrative, are themselves falling short of capturing the whole picture and need to be accompanied by field observations that are relevant to local land users. We used the participatory photo elicitation method in three sites in order to elicit local pastoralists’ perspectives on land degradation and identify the indicators that they use to characterize pasture quality, while empowering them to lead the discussion. The discussion revealed indicators far beyond bioproductivity, including livestock performance as well as composition and quality of the herbaceous and woody vegetative cover, invasive species, soil quality and water availability. We found that the pastoralists’ interest, knowledge and field observations could potentially be harnessed using a crowd-sourcing approach in order to produce a geospatially explicit dataset of land degradation, which would be complementary to the remote sensing-based maps of trends in bioproductivity and could serve as a reference for the development of more targeted remote sensing-based indicators of land degradation


1996 ◽  
Vol 101 (C8) ◽  
pp. 18213-18235 ◽  
Author(s):  
P. Wadhams ◽  
J. C. Comiso ◽  
E. Prussen ◽  
S. Wells ◽  
M. Brandon ◽  
...  

2020 ◽  
Vol 55 ◽  
pp. 101032 ◽  
Author(s):  
Irina Cârlan ◽  
Bogdan-Andrei Mihai ◽  
Constantin Nistor ◽  
André Große-Stoltenberg

2020 ◽  
Vol 149 ◽  
pp. 02009
Author(s):  
Maira Razakova ◽  
Alexandr Kuzmin ◽  
Igor Fedorov ◽  
Rustam Yergaliev ◽  
Zharas Ainakulov

The paper considers the issues of calculating the volume of the landslide from remote sensing data. The main methods of obtaining information during research are field observations. The most important results of field studies are quantitative estimates, such as the volume of the embankment resulting from a landslide, morphometric indicators, etc. The study of a remote and remote object was carried out by remote methods using aerial photographs in the Ile Alatau foothills at 1,600 meters above sea level. The obtained materials from the mudflow survey will be useful in developing solutions to mitigate the effects of disasters and in the design of measures for engineering protection from landslides.


2020 ◽  
Vol 12 (22) ◽  
pp. 3690 ◽  
Author(s):  
Angela Lausch ◽  
Michael E. Schaepman ◽  
Andrew K. Skidmore ◽  
Sina C. Truckenbrodt ◽  
Jörg M. Hacker ◽  
...  

The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring.


Sign in / Sign up

Export Citation Format

Share Document