scholarly journals Triton Haze Analogues: the Role of Carbon Monoxide in Haze Formation

Author(s):  
Sarah E. Moran ◽  
Sarah M. Hörst ◽  
Chao He ◽  
Michael J. Radke ◽  
Joshua A. Sebree ◽  
...  
Redox Report ◽  
2010 ◽  
Vol 15 (5) ◽  
pp. 193-201 ◽  
Author(s):  
Tomohisa Takagi ◽  
Yuji Naito ◽  
Kazuhiko Uchiyama ◽  
Toshikazu Yoshikawa

2021 ◽  
Vol 95 (4) ◽  
pp. 1141-1159
Author(s):  
Rong-Jane Chen ◽  
Yu-Hsuan Lee ◽  
Tzu-Hao Chen ◽  
Yu-Ying Chen ◽  
Ya-Ling Yeh ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


1997 ◽  
Vol 432 (1-2) ◽  
pp. 1-5 ◽  
Author(s):  
Roberto Gómez ◽  
JoséM. Orts ◽  
Juan M. Feliu ◽  
Jean Clavilier ◽  
Lorena H. Klein

2002 ◽  
Vol 927 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Alexandre A. Steiner ◽  
Luiz G.S. Branco
Keyword(s):  

1975 ◽  
Vol 6 (33) ◽  
pp. no-no
Author(s):  
D. J. S. GUTHRIE ◽  
I. U. KHAND ◽  
G. R. KNOX ◽  
J. KOLLMEIER ◽  
P. L. PAUSON ◽  
...  
Keyword(s):  

2001 ◽  
Vol 688 ◽  
Author(s):  
St. Schneider ◽  
H. Kohlstedt ◽  
R. Waser

AbstractNoble metals like platinum or irdium are used as electrode materials in DRAM or FRAM devices. Their etch process is a challenge as conventional, sputter driven etch processes either result in redeposition problems (fences) or in a severe sloping (loss of dimension control) and are not acceptable for high density integration architectures. The high temperature etch regime offers a solution by increasing the chemical etch component and thus the volatility of the etch products.As previously reported, the platinum etch rate increases exponentially for a chlorine etch process with increasing wafer temperature. In this study we investigate the particular role of carbon monoxide in a Cl2/CO etch process. We find that carbon monoxide additions to a chlorine process boost the chemical component of the platinum etch rate very significantly, exceeding the effects in the chlorine only process regime by far. Additionally we compare these results with a Cl2/O2 and a Cl2/CO2 process chemistry, which are not found to be particularly beneficial.To better understand the etch process we use an energy dispersive quadrupole mass spectrometer for in situ monitoring, attached to the chamber at two different locations. We are able to position the probe orifice at the place of the wafer electrode, to record ion energy and ion mass spectra of species impinging on the wafer plane. A second off axis position allows for etch product monitoring.


Sign in / Sign up

Export Citation Format

Share Document