Investigation of the Role of Carbonylchemistry to Pattern Platinum Electrodes

2001 ◽  
Vol 688 ◽  
Author(s):  
St. Schneider ◽  
H. Kohlstedt ◽  
R. Waser

AbstractNoble metals like platinum or irdium are used as electrode materials in DRAM or FRAM devices. Their etch process is a challenge as conventional, sputter driven etch processes either result in redeposition problems (fences) or in a severe sloping (loss of dimension control) and are not acceptable for high density integration architectures. The high temperature etch regime offers a solution by increasing the chemical etch component and thus the volatility of the etch products.As previously reported, the platinum etch rate increases exponentially for a chlorine etch process with increasing wafer temperature. In this study we investigate the particular role of carbon monoxide in a Cl2/CO etch process. We find that carbon monoxide additions to a chlorine process boost the chemical component of the platinum etch rate very significantly, exceeding the effects in the chlorine only process regime by far. Additionally we compare these results with a Cl2/O2 and a Cl2/CO2 process chemistry, which are not found to be particularly beneficial.To better understand the etch process we use an energy dispersive quadrupole mass spectrometer for in situ monitoring, attached to the chamber at two different locations. We are able to position the probe orifice at the place of the wafer electrode, to record ion energy and ion mass spectra of species impinging on the wafer plane. A second off axis position allows for etch product monitoring.

2000 ◽  
Vol 655 ◽  
Author(s):  
St. Schneider ◽  
H. Kohlstedt ◽  
R. Waser

AbstractThe objective of this work was to develop a process to pattern noble metal electrodes. To systematically investigate possible reactive etch process regions, characterized by volatile etch products, we used a reactive ion beam etching (RIBE) tool with a filament free ICP source. This configuration gives us exact control over the beam energy and the current density, and allows to use reactive gases. An energy dispersive quadrupole mass spectrometer is fitted to the chamber for in situ monitoring.We study the influence of the beam energy and the beam current impinging on the wafer surface as well as it's angular dependence. Several additives to the chlorinated process chemistry are investigated and characterized in terms of their role to help to increase the etch rate, maintain a vertical profile, or to enhance process selectivity.The main focus of the study is on Platinum. Blanket films were used to describe the influence of the material, and analysis were carried out to characterize the process in terms of etch rate, residues and selectivity.


Author(s):  
L.D. Schmidt ◽  
K. R. Krause ◽  
J. M. Schwartz ◽  
X. Chu

The evolution of microstructures of 10- to 100-Å diameter particles of Rh and Pt on SiO2 and Al2O3 following treatment in reducing, oxidizing, and reacting conditions have been characterized by TEM. We are able to transfer particles repeatedly between microscope and a reactor furnace so that the structural evolution of single particles can be examined following treatments in gases at atmospheric pressure. We are especially interested in the role of Ce additives on noble metals such as Pt and Rh. These systems are crucial in the automotive catalytic converter, and rare earths can significantly modify catalytic properties in many reactions. In particular, we are concerned with the oxidation state of Ce and its role in formation of mixed oxides with metals or with the support. For this we employ EELS in TEM, a technique uniquely suited to detect chemical shifts with ∼30Å resolution.


Redox Report ◽  
2010 ◽  
Vol 15 (5) ◽  
pp. 193-201 ◽  
Author(s):  
Tomohisa Takagi ◽  
Yuji Naito ◽  
Kazuhiko Uchiyama ◽  
Toshikazu Yoshikawa

2021 ◽  
Vol 95 (4) ◽  
pp. 1141-1159
Author(s):  
Rong-Jane Chen ◽  
Yu-Hsuan Lee ◽  
Tzu-Hao Chen ◽  
Yu-Ying Chen ◽  
Ya-Ling Yeh ◽  
...  

2000 ◽  
Vol 655 ◽  
Author(s):  
Cesar Guerrero ◽  
Florencio Sánchez ◽  
José Roldán ◽  
Frank Güell ◽  
María V. García-Cuenca

AbstractA comparison of pulsed laser deposited PbZr0.53Ti0.47O3 (PZT) thin film capacitors with SrRuO3 (SRO) and LaNiO3 (LNO) electrodes on (001) yttria-stabilized zirconia (YSZ) and lattice matched (001) LaAlO3 substrates is presented. Both electrode materials allow for the formation of ferroelectric capacitors with large remnant polarization (20-30 μC/cm2) and negligible fatigue, although slight differences arise regarding the promotion of either the rhombohedral or tetragonal phases of PZT. Far more crucial seems to be the tendency of SrRuO3 to develop a rougher surface at either small (<30 nm) or large thickness (>100 nm), and on YSZ substrates. In those cases a highly defective and possibly low dielectric interface forms between the electrode and the ferroelectric layer, resulting in greatly degraded ferroelectric performance. LaNiO3 is free from these limitations except for the cracks forming at very large thickness (>300 nm), and therefore appears as a more versatile electrode material.


1997 ◽  
Vol 432 (1-2) ◽  
pp. 1-5 ◽  
Author(s):  
Roberto Gómez ◽  
JoséM. Orts ◽  
Juan M. Feliu ◽  
Jean Clavilier ◽  
Lorena H. Klein

2002 ◽  
Vol 927 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Alexandre A. Steiner ◽  
Luiz G.S. Branco
Keyword(s):  

1975 ◽  
Vol 6 (33) ◽  
pp. no-no
Author(s):  
D. J. S. GUTHRIE ◽  
I. U. KHAND ◽  
G. R. KNOX ◽  
J. KOLLMEIER ◽  
P. L. PAUSON ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document