scholarly journals Implementation of an adaptive bias‐aware extended Kalman filter for sea‐ice data assimilation in the HARMONIE‐AROME numerical weather prediction system

Author(s):  
Yurii Batrak
Author(s):  
Jonathan Poterjoy ◽  
Ghassan J. Alaka ◽  
Henry R. Winterbottom

AbstractLimited-area numerical weather prediction models currently run operationally in the United States follow a “partially-cycled” schedule, where sequential data assimilation is periodically interrupted by replacing model states with solutions interpolated from a global model. While this strategy helps overcome several practical challenges associated with real-time regional forecasting, it is no substitute for a robust sequential data assimilation approach for research-to-operations purposes. Partial cycling can mask systematic errors in weather models, data assimilation systems, and data pre-processing techniques, since it introduces information from a different prediction system. It also adds extra heuristics to the model initialization steps outside the general Bayesian filtering framework from which data assimilation methods are derived. This study uses a research-oriented modeling system, which is self-contained in the operational Hurricane Weather Research and Forecasting (HWRF) model package, to illustrate why next-generation modeling systems should prioritize sequential data assimilation at early stages of development. This framework permits the rigorous examination of all model system components—in a manner that has never been done for the HWRF model. Examples presented in this manuscript show how sequential data assimilation capabilities can accelerate model advancements and increase academic involvement in operational forecasting systems at a time when the United States is developing a new hurricane forecasting system.


2018 ◽  
Vol 146 (2) ◽  
pp. 599-622 ◽  
Author(s):  
David D. Flagg ◽  
James D. Doyle ◽  
Teddy R. Holt ◽  
Daniel P. Tyndall ◽  
Clark M. Amerault ◽  
...  

Abstract The Trident Warrior observational field campaign conducted off the U.S. mid-Atlantic coast in July 2013 included the deployment of an unmanned aerial system (UAS) with several payloads on board for atmospheric and oceanic observation. These UAS observations, spanning seven flights over 5 days in the lowest 1550 m above mean sea level, were assimilated into a three-dimensional variational data assimilation (DA) system [the Naval Research Laboratory Atmospheric Variational Data Assimilation System (NAVDAS)] used to generate analyses for a numerical weather prediction model [the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)] with a coupled ocean model [the Naval Research Laboratory Navy Coastal Ocean Model (NCOM)]. The impact of the assimilated UAS observations on short-term atmospheric prediction performance is evaluated and quantified. Observations collected from 50 radiosonde launches during the campaign adjacent to the UAS flight paths serve as model forecast verification. Experiments reveal a substantial reduction of model bias in forecast temperature and moisture profiles consistently throughout the campaign period due to the assimilation of UAS observations. The model error reduction is most substantial in the vicinity of the inversion at the top of the model-estimated boundary layer. Investigations reveal a consistent improvement to prediction of the vertical position, strength, and depth of the boundary layer inversion. The relative impact of UAS observations is explored further with experiments of systematic denial of data streams from the NAVDAS DA system and removal of individual measurement sources on the UAS platform.


2018 ◽  
Vol 11 (8) ◽  
pp. 3347-3368 ◽  
Author(s):  
Yurii Batrak ◽  
Ekaterina Kourzeneva ◽  
Mariken Homleid

Abstract. Sea ice is an important factor affecting weather regimes, especially in polar regions. A lack of its representation in numerical weather prediction (NWP) systems leads to large errors. For example, in the HARMONIE–AROME model configuration of the ALADIN–HIRLAM NWP system, the mean absolute error in 2 m temperature reaches 1.5 ∘C after 15 forecast hours for Svalbard. A possible reason for this is that the sea ice properties are not reproduced correctly (there is no prognostic sea ice temperature in the model). Here, we develop a new simple sea ice scheme (SICE) and implement it in the ALADIN–HIRLAM NWP system in order to improve the forecast quality in areas influenced by sea ice. The new parameterization is evaluated using HARMONIE–AROME experiments covering the Svalbard and Gulf of Bothnia areas for a selected period in March–April 2013. It is found that using the SICE scheme improves the forecast, decreasing the value of the 2 m temperature mean absolute error on average by 0.5 ∘C in areas that are influenced by sea ice. The new scheme is sensitive to the representation of the form drag. The 10 m wind speed bias increases on average by 0.4 m s−1 when the form drag is not taken into account. Also, the performance of SICE in March–April 2013 and December 2015–December 2016 was studied by comparing modelling results with the sea ice surface temperature products from MODIS and VIIRS. The warm bias (of approximately 5 ∘C) of the new scheme is indicated for areas of thick ice in the Arctic. Impacts of the SICE scheme on the modelling results and possibilities for future improvement of sea ice representation in the ALADIN–HIRLAM NWP system are discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Tien Du Duc ◽  
Lars Robert Hole ◽  
Duc Tran Anh ◽  
Cuong Hoang Duc ◽  
Thuy Nguyen Ba

The national numerical weather prediction system of Vietnam is presented and evaluated. The system is based on three main models, namely, the Japanese Global Spectral Model, the US Global Forecast System, and the US Weather Research and Forecasting (WRF) model. The global forecast products have been received at 0.25- and 0.5-degree horizontal resolution, respectively, and the WRF model has been run locally with 16 km horizontal resolution at the National Center for Hydro-Meteorological Forecasting using lateral conditions from GSM and GFS. The model performance is evaluated by comparing model output against observations of precipitation, wind speed, and temperature at 168 weather stations, with daily data from 2010 to 2014. In general, the global models provide more accurate forecasts than the regional models, probably due to the low horizontal resolution in the regional model. Also, the model performance is poorer for stations with altitudes greater than 500 meters above sea level (masl). For tropical cyclone performance validations, the maximum wind surface forecast from global and regional models is also verified against the best track of Joint Typhoon Warning Center. Finally, the model forecast skill during a recent extreme rain event in northeast Vietnam is evaluated.


Sign in / Sign up

Export Citation Format

Share Document